AD-A161 917 FIVPRE- A PRE-PROCESSOR FOR THE CONCEPT EXPLORATION i1
. MODEL SHOPS(U) DEFENCE RESERRCN ESTRBLISHNENT ATLANTIC
DARTMOUTH (NOVA SCOTIA> B LEE ET AL AUG
UNCLASSIFIED DRER-85/310 F/G 13/18 NL

H
3

.

2%
v

A S,

S Tl

~Trv v

L

"" 10 %1 2
=k
NI
= e
28 s pie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREALS OF STANDARDS. 1963 A

P A I A A WS VAT (R TP I P

D)

-~
~

-

P s

1

e
»
.

*

-

P

«
v

¥E

>

.
’

. ,

>

WiE R

2

S
P

e L.

’

O A s

UNLIMITED DISTRIBUTION <:jjz::)

l* National Defence Défense Nationale

Research and Bureau de Recherche
Development Branch et Développment

™~ TECHNICAL COMMUNICATION 85/3t0
o AUGUST 1985
F .
© -
| yaa ;:'_
<
a
< FIVPRE:
A PRE-PROCESSOR FOR THE b!
CONCEPT EXPLORATION MODEL SHOPS =
Bonny Lee E
J.L. Colwell P.V. Godreau -
ELECTE
DECO 4 18t
g N/_ D
L ﬂ*
— Defence Centre de
b= Research Recherches pour la
I“:" Establishment Défense
= Atlantic Atlantique
DISTRIBUTION STATEMENT A
Canadd L Pl oo
R5 12 3 092 =

UNLIMITED DISTRIBUTION

.
bl s Banliniiads

l* National Defence Défense Nationale

Research and Bureau de Recherche
Development Branch et Développment

T, X Y T X,

FIVPRE:
A PRE-PROCESSOR FOR THE
CONCEPT EXPLORATION MODEL SHOPS

3 Bonny Lee
J.L. Colwell P.V. Godreau

AUGUST 1985 1

Approved by L.J. Leggat H/Hydronautics Section

DISTRIBUTION APPROVED BY / W

0/70

= L "‘.A_J-JL-J-‘:“J T

TECHNICAL COMMUNICATION 85/310

oo
Defence .z, Centre de
Research \rv v} Recherches pour la
Establishment »’3; Défense

. Atlantic /73 Wi Atlantique
Qi

Canadia

.................
R T T e A N N S Y P i T W R UL VL PR L Sl

& - . Tu . Sl Ll < 4 LA ALl o ~
o
‘
<.
r
e
‘r-\'
]
SN
!
~
8 ABSTRACT
;f FIVPRE is an interactive pre-processor for SHOP5, the DREA
. Concept Exploration Model for conventional monohull frigates and
. destroyers. FIVPRE provides the user with a simple means to create and
- modify the input files for SHOPS5. Prior knowledge of the format of these
. files is not required. Through a simple command language, FIVPRE can be
used to define new or change existing values of SHOPS input parameters
o from the terminal. FIVPRE also keeps records of the files it has
. created. This Technical Communication is a user's manual for FIVPRE,
- -. describing the FIVPRE commands and giving examples of terminal sessions.
T The appendices contain a brief description of SHOPS input and program
e documentation of FIVPRE, including descriptions of all the procedures in
) FIVPRE.
.."‘
-
{
B~
Y
3
",
35 ii
<
e T S T e T T
VR TR ?:'_.}.:1-1 el *i";;';."l'\;‘"’i‘"."'i.':\.'wf.\;i._ ...;‘A,:.L_;_;:‘;:.1_.‘_::.':__".'.:'.‘;:':'_'.." -.'A,';f;‘: -

o =~ - - W= (AR S A - = 2 Al Sl at AR S S B A At A i e el e "T":"F‘f:'&"""j".‘";"
o
&
v
2
.i:
;_
i
i!
B
3 RESUME
X'
- Le FIVPRE est un préprocesseur interactif du SHOPS5, le modéle
d'exploration des concepts qu'utilise le CRDA pour les frégates et les
N destroyers monocoques classiques. Le FIVPRE fournit & 1l'usager un moyen
o facile de créer les fichiers d'entrée pour le SHOPS ou de modifier ces
- fichiers, et cela sans avoir & connaltre d'avance le format des fichiers
- en question. A partir du terminal et au moyen d'un langage de commande
L simple, on peut se servir du FIVPRE pour définir de nouvelles valeurs dans
i les paramétres d'entrée du SHOP5 ou pour modifier les valeurs existantes.
- Le FIVPRE répertorie également les fichiers qu'il a créés. La présente
P communication technique est un guide de 1'usager du FIVPRE qui décrit les
L commandes du systeéme et donne des exemples de séances d'utilisation au
G; terminal. Les annexes contiennent une bréve description des entrées SHOPS
- et des renseignements sur la programmation du FIVPRE comprenant notamment

des descriptions de toutes les procédures applicables au préprocesseur.

R,
B\
.‘x
_~\
6
2
,i? Accesion For N
b NTIS CRA&I v,
k.- DTiIC TAB 0
i Unannounced 0
5 Justification
- By PV
2 Dist.ibution
e Availability Codes
- - h) Avail and/or
& ,. \ Dist Special
- &
W “”20
Ny
2 S P A-|

iii

“yr s -, - . . . - . e e e - .- . -
o '\- “'\ RS "' ".' Se0 . P R ~. b . - J e T T J
. - . R . o 0 . . . K > '.. -,‘ o ‘.. . T e - ~

\,&%t \'\“."\' ~.,:'.:._,',~..‘_.L-.‘ e T e T T
WY ax\lﬂlt\\. A‘HL\ 3-_ -;LA--- PTG I VA N T VAP Vs A A VLU IR D LATS G S O

R

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION
1.1 Purpose of FIVPRE
1.2 An Overview of SHOP5 Input Variables

FEATURES OF FIVPRE
2.1 The FIVPRE Command Language
2.2 User-Friendly Features

COMMANDS IN FIVPRE
CHANGE
DEFAULT
DISPLAY

DUMP

ENTER

EXIT

FIND

HELP

NEW

WWwLWwWwLwLwwww
.
VOOV WD

TWO EXAMPLES OF USING FIVPRE
4.1 Creating a New File with FIVPRE
4.2 Editing an Existing File with FIVPRE

CONCLUDING REMARKS
TABLE

APPENDICES

A. DESCRIPTION OF SHOP5 INPUT VARIABLES

B. CREATING A NEW FILE (SAMPLE TERMINAL SESSION)

C. EDITING AN EXISTING FILE (SAMPLE TERMINAL SESSION)
D. MACHINE DEPENDENCIES

E. GENERAL PROGRAM STRUCTURE OF FIVPRE

F. COMMAND PROCESSING SUBROUTINES

G. THE FIVPRE DICTIONARIES AND ASSOCIATED SUBROUTINES
H. COMMAND EXECUTION SUBROUTINES

I. UTILITY SUBROUTINES

REFERENCES

iv

et B ATE TR T T N TR FETLRLELVLF LML U AT B I LT AR R TR R AT R TN Y T W I T T W W Td W a7 d e PN Ty T TS AT T e Te v N

ii

(5

10

10

11

70

bl REe " 80 SAae buant uy SEn Adnn-dhte LEa-loadh oo pAe f - At (A Y a e it - Sl R Sl T it i A et e\ ot et Ittt b at i Aas et et el Set et Jia* Jhat et daay

. G
":"-" '.. \) X
S, T Du. Feps By

1. INTRODUCTION

A "concept exploration model" is a simplified form of a ship
synthesis model which addresses the earliest phase of the ship selection
process. It is a computer program which takes as input a set of ship
dimensions and simple operational requirements, and calculates therefrom
ship stability, performance, and other capabilities. Sufficient
constraints on ship geometry and stability are incorporated into the
program to ensure that unrealistic configurations are rejected; hence
performance is estimated only for ships which are feasible from an
engineering point of view.

1.1 Purpose of FIVPRE

FIVPRE is an interactive pre-processor for SHOP5 (1), the DREA
Concept Exploration Model for conventional monohull frigates and
destroyers. SHOPS5 uses a data file which must have a particular format.
With FIVPRE, the user can create and modify data files to be used as SHOPS
input, without having to know the exact format of the input file.

1.2 An Overview of SHOP5 Input Variables

SHOP5 input includes parameters which describe a ship or number
of ships, and parameters which control the execution of the program. All
these parameters, or 'variables', are organized into sets of variables, or
'records'. There are 11 records altogether, but not all of them are used
in every set of input. Their titles are as follows:

Record 1: Title

Record 2: Program Control Integers

Record 3: Primary Input

Record 4: Re~definition of Method Control Integers
Record 5: Re-definition of Optional Input

Record 6: Re-definition of Rejection and Seakeeping Criteria
Record 7: User-supplied Appendage Resistance Coefficient
Record 8: User-supplied Overall Propulsive Coefficient
Record 9: Engine Algorithm Data

Record 10: User-supplied Generator Data

Record 11: User-supplied Cost Factors

Records 1,2, and 3 are required input. Record 1 contains only
one variable, which is the title of the file. Record 2 contains 8
integers which control the execution of SHOP5. Record 3 contains
variables which describe the hull form and which specify the operational
requirements for a ship or se: of ships.

'

e

Records 4,5, and 6 supply additional information for SHOPS.
Record 4 contains up to 9 integers, which determine the design methods
used by SHOPS5. The 9 method control integers have default values, but any
or all of the integers may be re-defined by the user. Record 5 contains
the optional input variables which describe the ship or set of ships in
more detail. There are 44 optional input variables, and they all have
default values. Like the method control integers, these optional input
variables may b2 re-defined by the user. Record 6 contains the rejection
and seakeeping criteria. There are 7 rejection criteria and 4 seakeeping
criteria. Like the variables of Record 4 and Record 5, they have default
values that can be re-defined by the user. For Records 4, 5, and 6, only
the variables which are re-defined bv the user appear in the input data
file for SHOPS.

Records 7,8,9,10, and 11 are not required unless certain method
control integer: are re-defined by the user. Record 7 contains the
user-supplied appendage resistance coefficient. Record 8 contains the
user-supplied oversll propulsive coefficient. Record 9 contains the
engine algorithm data. Record 10 contains the user—supplied generator
data. Record 1i contains the user-supplied cost factors. Record 11 has a
similar format tc that of Records 4,5,and 6, and contains only those cost
factors out of a possible 16 which have been re-defined by the user.

For more information on the SHOP5 input variables, see Appendix A
or the SHOP5 User's Manual (1).

2. FEATURES OF FIVPRE

The program F1VPRE acts as an intermediate storage area for SHOPS
input variables. Using FIVPRE, the user can define the values for input
variables, eithe¢r from the terminal or from an existing data file; he can
display these variables and change their values; and he can write them on
a data file which will be the input for SHOPS.

2.1 The FIVPRE “ommand Language

Through the FIVPRE command language, the user can tell FIVPRE
what action he wants to take, and which variable the action should be
applied to. Thus, a FIVPRE instruction has the syntax

<actior> <specifier>

where <accion> is the command word and <specifier> is a variable
name or a recor: name. ror some commznds, <specifier> is not needed.

The algorithms used by FIVPRE to recognize commands are based on
algorithms developed by Hally and Dent (2). FIVPRE uses a dictionary of
command words to find which command the user wants. Since a command word
may be uniquely specified by its first few letters, the user need not type
in the whole command word. For example, the command 'CHANGE" may be
specified by "C", since "CHANGE" is the only word in the dictionary which
starts with "C". On the other hand, the commands "DEFAULT", "DISPLAY",
and "DUMP" all start with "D", so '"D" would not uniquely identify a
command. However, "DE" would be recognized as "DEFAULT" by the
dictionary, since no other command word starts with "DE". Similarly, "DI"
would be recognized as "DISPLAY", and "DU" would be recognized as "DUMP".

FIVPRE uses two dictionaries to find which variable or record the
user wants: one dictionary uses the variable's "official" abbreviation,
while the other uses its description (enough to uniquely identify the
variable). FIVPRE first looks through its dictionary of abbreviations.
Then, if it can't find an abbreviation that matches the word specified by
the user, FIVPRE looks through its dictionary of descriptions for phrases
containing the words specified by the user.

The abbreviation dictionary and description dictionary contain
the abbreviations and descriptions of records as well as variables;
therefore, the user can specify records in much the same way as he
specifies variables. An example of a command which refers to a record
is: "DISPLAY PRIMARY INPUT". The command 'DISPLAY RECORD 3" would have
the same effect. Table 1 contains the abbreviations and descriptions of
the records.

An example of how FIVPRE would identify a variable follows.
Suppose the user wants to display the superstructure length, which has the
abbreviation LS in the User's Manual for SHOP5. The user could specify
this variable by using its abbreviation LS, by using all of its
description, SUPERSTRUCTURE LENGTH, or by using only part of its
description: SUPER LEN. Suppose the user types the command "DISPLAY SUPER
LEN". To identify the variable, FIVPRE looks through its abbreviation
dictionary for "SUPER". It doesu't find a matching entry in the
dictionary; it then looks through its description dictionary for any
description which contains both "SUPER" and "LEN". 1In this example, LS,
the superstructure length, would be the only matching description.

Sometimes the description specified by the user could apply to
more than one variable. In this situation, FIVPRE will list the possible
matching variable descriptions and ask the user to pick one. For example,
suppose the user types "DISPLAY SU LE". FIVPRE responds with:

EMFURANY R I et Lt et et et e T e e . . PR
LW S hJ et ml et el el Al At s PN S Y PR At P W) . " -

YT

PP RPN PP S

*% AMBIGUOUS INPUT **

1 Ls: SUPERSTRUCTURE LENGTH

2 AKl: COST FACTOR: HULL (LESS SUPERSTRUCTURE)
3 AK15: COST FACTOR: MISC. SURCHARGES, LEAD SHIP
ENTER SELECTION NUMBER (OR 99 FOR EXIT) =

The user would type in 1, 2, 3, or 99, depending on which
variable he wanted.

If there are more than 15 possible choices, FIVPRE will not
display them. Instead, ‘t will print out a message saying that the record

or variable name is too ambiguous.

2.2 User-Friendly Features

Several FIVPRE features make the program easier to use. These
features include helpful commands, exrensive use of prompts when changing
the values of variables, checking routines for validating input from the
user, and special input values which can be used in response to prompts.
In addition, FIVPRE will write out a brief introduction tc the program at
the beginning of its run, if the user desires.

Helpful FIVPRE commands are NEVW, HELP, and DEFAULT. All three
commands are described in detail in Section 3.

The NEW command is particularly useful for the user who is not
familiar with the SHOP5 input variables. This command prompts the user
for all the data needed to create a SHOP5 input file; the user is omnly
required to respond to the prompts.

The HELP command gives information about FIVPRE commands. It
either displays a list of all the FIVFRE commands or displays information
about a specific command. This is heipful for the user who is not
familiar with the FIVPRE command language.

The DEFAULT command displays the default value of a specified
variable. For example, the command "DEFAULT VS" would display the default
value of VS, the superstructure volume. This command is useful when the
user is trying to decide whether the default value of a variable is
appropriate or whether he should re-define the value of the variable.

FIVPRE uses prompts to request input when the user is changing
the value of a variable through the keyboard. There are two types of
prompts: direct prompts and menu prompis. A direct prompt is an
open-ended request for data, e.g. ENTEK THE VALUE FUR Ls: SUPERSTRUCTURE
LENGTH => . A menu prompt aske the user to make a selection from a list
of options, e.g.

e w ey ey = o e el e e
. ’ N .'. o <~ - '! ~ .' .._ .- .
SRR AN Sl T e T
o e

.Y
I

SRITIE .;E N R BN
SN R - R VRIS AL AL o
PP IRRT I SIEIE SRS DF NN AR \h PR W 2 }\.‘L -_;‘. RPN, U, L S S

) S 2
x4

¥

AP
falie fepa

4
z

TYPE GF ENGINES

SHOPS5 RUBBER ENGINES

USER SUPPLIED RUBBER ENGINES
SHOP5 REAL ENGINES

USER SUPPLIED REAL ENGINES

wro - o
1

ENTER NUMBER = >

The user then types in the number of his choice. This type of
prompt is used when a variable has a limited number of allowed values.

Invalid input in response to a prompt results in an error message
and another prompt. 'Invalid input" means that non-rumeric characters
are used when a number is required (except for the special input values
noted below), or an input value is outside the allowed range in & menu
prompt. For example, if the prompt is "ENTER THE VALUE FOR Ls: SUPER-
STRUCTURE LENGTH = >", and the user types a number using the letter O
instead of the digit 0, a message will be displayed: '**INVALID INPUT**",
The program will then prompt the user again. This gives the user another
chance if he should hit the wrong key when typing a response to a prompt.

Two non-numeric characters which are not invalid input are the
character "*" and the word "DEF". They have special fuactions in FIVPRE.
When data is requested through a direct prompt, the user may use the
character "*", to mean "leave the value of variable the way it is". For
example, suppose the user types "CHANGE LS" and then decides against
changing LS (the superstructure length); when the prompt appears, the user
can type "*" and the value of LS will not be changed.

The other special input value, "DEF", means "default value'" when
typed in reponse to a direct prompt. For example, suppose the prompt is
"ENTER VALUE FOR Vs: SUPERSTRUCTURE VOLUME >", Typing "DEF" will set VS
to the default value. In effect, "DEF" cancels the re-definition of the
variable. Note that this response can only be used for optional input
variables, rejection and seakeeping criteria, and cost factors. Using
"DEF" for other variables will result in an error message. Note: The
command DEFAULT should not be confused with the special input value "DEF";
DEFAULT displays the default value, while "DEF" sets the default value.

3. COMMANDS IN FIVPRE

3.1 CHANGE

The CHANGE command changes the values of a set of variables (a
record) or a single variable. The format for the command is seen below:

1%y l”““' S
Y N
A

I '

T >
,'.'.'.""n .

4 .
-y .

v
-. A
'

CHANGE variable name Example: CHANGE TITLE
CHANGE record name Example: CHANGE REC4

After a CHANGE command is entered, a prompt or series of prompts
will appear. The type of prompt depends on which variable is being
changed; some variables use a menu prompt, others use a direct prompt. If
an entire record is being changed, FIVPRE will generate prompts for all
the variables in the record. For records 4,5,and 6, a menv prompt is used
for the entire record, giving the user a choice of variables to re-define.

In some cases, the command to change a single variable will
result in a series of prompts rather than a single prompt. This can occur
in two situations. In one situation, changing the value of one variable
may affect several other variables, which would need to be re-defined.
For example, changing the mode from search to describe would require that
the primary input variables be re-defined. 1In the other case, the
variable specified in the command belongs to a subgroup of variables. An
example of such a subgroup is CPLO, CPHI, and 13 (minimum priswatic
coefficient, maximum prismatic coefficient, and number of prismatic
coefficients to be considered). If the user wants to change only one
parameter in the subgroup, he can use the special character "#'" in
response to the additional prompts.

3.2 DEFAULT

The DEFAULT command displays the default value of a variable. The
format for the command is seen below:

DEFAULT variable name Example: DEFAULT NDECK

After the DEFAULT command is entered, FIVPRF displays the default
value of the variable. If the variable does not have a defauit value,
FIVPRE will print a message telling the user that there is v default
value for this variable. Note that it is not possible to us= this command
to display the defaul: values of a record; this command only works for
single variables.

3.3 DISPLAY

The DISPLAY command displays the value of a single variahle, the
values of a record, or the values of all the variables. The format for the
command is seen below:

DISPLAY variable name Example: DISPLAY MODE
DISPLAY record name Example: DISPLAY RECORD 3
DISPLAY ALL

- TR R AP S A VR VA RS - - At A
ISV RPN IS AP L O T T R o R SO T A

.

,‘

., ‘r"‘r i X
!

LR A

t‘b'-‘
N Y
e

For most records and variables, the format used to display the
values of the variables is straightforward. However, for a few of the
records, some explanation may be needed. For Record 4, the re-definition
of the method control integers, all the method control integers are
displayed, whether they have been re-defined or not. The integers that
have been re-defined are marked with a "*" in the left-hand margin. For
Records 5 and 6, only the re-defined variables are displayed, in order to
improve the readability of the display.

3.4 DUMP

The DUMP command writes the values of all the variables onto a
file called FIVIN, which is the input file for SHOPS5. The user may also
specify the name of another file in this command, in which case FIVPRE
writes the data both to this file and to FIVIN. The format for the
command 1s seen below:

DUMP
DUMP file name Exanple: DUMP SAMPLE

If the user has not specified a file name in the DUMP command,
FIVPRE will ask the user for the name of the file in which he wants the
input data stored. If the the user hits the return key without typing a
file name, FIVPRE will write the data to the file FIVIN.

If the specified file is not FIVIN, FIVPRE checks to see if the
file already exists. If this is the case, FIVPRE will tell the user and
ask the user if he wants to replace the existing file (thus destroying
whatever was previously written on the file). If the user doesn't want to
replace the file, he will be asked for another file name.

After the user has either entered the name of a new file or
decided to replace an existing file, FIVPRE writes the data to the
specified file. The data is also written to the file FIVIN.

Note that data is not really saved unless the user specifies a
file other than FIVIN, since FIVIN is always overwritten when a DUMP is
done.

3.5 ENTER

The ENTER command enters values of variables from an existing
data file. The format for the command is seen below:

ENTER
ENTER file name Example: ENTER FIVIN

Ml G A A S G S e < RN BP A AR el A AN A S di ShuiCa RS S Ak af Sl AEa /R~ o R bl Sulint bt e cd it B/ Attt Sad fhh S S/ el S S bt |

N

A

L' L'

)

3

A

i

P ‘o . .

4*{* If the user has not specified a file name in the ENTER command,
{ FIVPRE will ask the user which file he wants to enter. 1If the file

b exists, FIVPRE reads the data from the file into the appropriate

ROy variables. If the file does not exist, FIVPRE will ask the user if he
L wants to specify another file.

b 3.6 EXIT

AN The EXIT command stops the program. The format for this command
’&:t is seen below:

- 'l; EXIT

When the EXIT command is entered, the user exits from FIVPRE, 1If
a the user has changed the values of some variables and has not saved the
. values (through the DUMP command), FIVPRE will ask if the user wants to
- save the current file.

o 3.7 FIND

- The FIND command searches through a library file, using a search
e key supplied by the user, and prints out the names of data files which
contain the search key in their titles. The format for the command is
seen below:

FIND

R After the FIND command is entered, FIVPRE asks the user for a

2 search key. This is a word, phrase, or string of letters which FIVPRE

B looks for in the title of any existing data file. For example, if the
user wants FIVPRE to list any files which have "HELICOPTER" in their
titles, then "HELICOPTER" is the search key. As FIVPRE looks through the
library file, it prints out the title and the file name of any files which

N contain the search key in their title. If the user hits the return key

oo without typing in a search key, FIVPRE will list all the entries in the

K library file.

- The library file is called FIVLIB and contains a list of the
... titles and file names of data files which have been created by FIVPRE.

: X FIVPRE updates FIVLIB by several different methods. At the beginning of
LSy each session, FIVPRE checks through FIVLIB and deletes those entries whose
X corresponding files do not exist on the system; this ensures that files

e which have been removed from the system since the last use of FIVPRE are
e no longer listed in FIVLIB. Each time the DUMP command is used, the title
V.- and file name are added to FIVLIB. If a user enters data from an existing

I file which is not listed in FIVLIB, FIVPRE will add the title and file

name of the file to FIVLIB. No more than 30 files can be listed in FIVLIB;
any files created after FIVLIB is full will not be listed in FIVLIB.

S
T

. K i} - -
e . «
B A S - C L . e
AL AL . LSRR RN 3 T T o e T e e . R . .
. - ., . C e v e N “ L . L S R, PP .o B N
CHRIREILY IV I ISP AT S SINT SN S SR OPE R, PP E L PR PR TR R S R A A AR U Y P VL PN

3.8 HELP

The HELP command lists all the FIVPRE commands and also gives
information about a particular command. The format for this command is
seen below:

HELP
HELP command Example: HELP DISPLAY

"HELP" 1lists all the commands in FIVPRE, while "HELP command"
tells the user the purpose and format of the specified command. The
command "HELP SPECIALY will print an explanation of the two special input
symbols, "*'" and "DEF".

3.9 NEW

The NEW command changes the values of all the variables. It is
used when creating new data files. The format for the command is seen
below:

NEW

If the user has made changes to the values of any variables and
has not done a DUMP before entering the command NEW, he will be asked
whether he wants to continue with the NEW command, since the existing
values of all the variables will be erased. If the user wishes to
continue, FIVPRE will proceed with the execution of the NEW command.

The command NEW generates a series of prompts for all the
variables needed to create a new file. These variables are not
automatically written to a file, hence the user has a chance to edit the
data before using the DUMP command to write the data to a file.

4. TWO EXAMPLES OF USING FIVPRE

4.1 Creating A New File With FIVPRE

To create a new file using FIVPRE, only the commands NEW and DUMP
are needed. Appendix B contains a sample terminal session using FIVPRE to
create a file. The commands used in the sample terminal session are NEW
and DUMP,

4.2 Editing An Existing File With FIVPRE

Appendix C contains a sample terminal session using FIVPRE to
edit an existing file. The commands used in this session are HELP, FIND,
ENTER, CHANGE, DISPLAY, and DUMP.

tE:
[

.

. '.1 L.

'e
‘.A._‘_Lt‘_!_@ \.._L, '1- A

5. CONCLUDING REMARKS

FIVPRE provides a friendly interface between the user and a SHOP5
input file. With FIVPRE, new data files can be created and modified
without the exact knowledge of the format of the SHOPS5 input or the
computer system editor. FIVPRE also keeps track of the files it creates,
and so the user does not have to remember the names of all the SHOP5 input
files he has created. 1In general, FIVPRE makes the use of SHOPS5 much
easier.

10

E -0 e - LA
'yt - - R
i SNt I

.o Y. ol - - -
S L TRV T & A TR

Al mi =au ma s Wi’ an o a0~ w610 ENG AP A i g agL b A SRR R) A e skl S 5502 i St o i A I T D G ~R A RetiL Sk ~aoastviibel Ml Nt "R RS |

TABLE 1: RECORD NAMES

Record
Number Abbreviation Description
1 REC1 TITLE
2 REC2 PROGRAM CONTROL INTEGERS (pCcl)
3 REC3 PRIMARY INPUT
4 REC4 METHOD CONTROL INTEGERS (MCI)
5 RECS OPTIONAL INPUT
6 REC6 REJECTION/SEAKEEPING CRITERIA
7 REC?7 USER-SUPPLIED APPENDAGE RESISTANCE
COEFFICIENT
8 RECS8 USER-SUPPLIED OVERALL PROPULSIVE
COEFFICIENT
9 REC9 ENGINE ALGORITHM DATA
10 REC10 USER-SUPPLIED GENERATOR DATA
11 REC11 USER-SUPPLIED COST FACTORS
11
e S R R R £
-',_' N ‘Aﬁuh._ ;‘1;‘4. \\._1-\1‘5_ :‘:"1.;::;'_};‘\-: .:x; a.-_ ::.fi\.:. .;:‘;\:\!:.thr; :'.;1.;_.\‘;‘; s IL.{A: ;'l' "Q.

gy
__.:\1:
29NN
e
o APPENDIX A
7 .. (
0 DESCRIPTION OF SHOP5 INPUT VARIABLES
‘;i? (Adapted from SHOP5 User's Manual)
- For more detailed descriptions of the SHOP5 input variables, see
e the SHOP5 User's Manual.
RECORD (1): TITLE
TITLE Alphanuneric title shown on output, Maximum 80 characters. This
title is written on lineprinter output from both SHOPS5 and the
" post-processor.
1y RECORD (2): PROGRAM CONTROL INTEGERS
v
MODE Determines which of SEARCH or DESCRIBE modes is to be used.
o INOUT Controls the system of units for input and output.

IPOST Controls the use of disk files for storage of output data for the
post-processor, FIVPOS.

e ILPT Controls the use of lineprinter for output of ship data from the
e SEARCH nmode; must be input for both SEARCH and DESCRIBE mode.
 i;j ILEGND Controls the output of a legend of all parameters used in normal
L lineprinter output; legend includes parameter name, description,
~od and unirs.

L .

e NCON The number of Method Control Integers to be re-defined; default
v method will be used only for those design method options not
At re-defined. See Record (4).
e -
E::;f NOPTN The numb>er of Optional Input to be re-defined; default values
A will be usad only for those Optional Input not re-defined. See
by Record (5).
BE?? NLIM The numbzr of rejection and scakeeping criteria to be re-defined;
y},}j defaul: va.ues will bc¢ used only for those parameters not
bl re-defined. See Record (6).

Y
?-:'4"'4
Bea

nl}

'
e e“aa

RECORD (3): PRIMARY INPUT

This record provides the required input for definition of hull

form and operational requirements. Records (3.1) and (3.2) are for the
SEARCH and DESCRIBE modes, respectively.

Number of Characteristic dimension values to be considered.

Number of length/displacement ratios to be considered.

Number of prismatic coefficients to be considered.

Number of block coefficients to be considered.

Number of beam/draft ratios to be considered.

Minimum acceptable range at endurance speed (miles).

(3.1): PRIMARY INPUT, SEARCH MODE
Program Control Integer MODE = 0
Independent Variables (hull form)
XXXLO Minimum Characteristic dimension value.
XXXHI Maximum Characteristic dimension value.
I1
See Note 1.
CRMLO Minimum length/displacement ratio.
CRMHI Maximum length/displacement ratio.
12
CPLO Minimum prismatic coefficient.
CPHI Maximum prismatic coefficient.
I3
CBLO Minimum block coefficient.
CBHI Maximum block coefficient.
I4
BOTLO Minimum beam/draft ratio.
BOTHI Maximum beam/draft ratic.
15
Operational Requirements
E
wC Combat system weight (ton;tonne).
VD Design speed (knots).
Ve Cruise speed (knots).
VE Endurance speed (knots).
N4 Seakeeping speed (knots).
HW Seakeeping significant wave height (ft;m).
Notes:

(1) The type of input expected for the characteristic dimension
depends on the value of Method Control Integer IDIMEN. See
Record (4).

(2) 11 x 12 x I3 x 14 x I5 must be < 80l.

(3) Each of I1, I2, 13, 14, I5 must be< 12.

S A A R A RS Sl Gl GG A A S aul EPUL S A AOVE-Su el A it i et aae e - Ly T Ty W

'-‘-‘.:j (3.2): PRIMARY INPUT, DESCRIBE MODE
ol Program Control Integer MODE > 0.

Independent Variables (hull form)

XXX Characteristic dimension, see Note | for Record (3.1).

CRM Length/displacement ratio (Froude notation, Circle M).

CP Prismatic coefficient.

CB Block coefficient.

BOT Beam/draft ratio. '

Operational Requirements

We Combat system weight (ton;tonmne).

vD Design speed (knots).

A7 Cruise speed (knots).

VE Endurance speed (knots).

VW Seakeeping speed (knots).

HW Seakeeping significant wave haight (ft;m).

Notes: (1) A maximum of 11 ships may be considered by the DESCRIBE mode.

RECORD (4): Re-definition of METHOD CONTROL TNTEGERS
Only used if Program Control Integer NCON > 0.

This record contains the numbers and new values of the Method
Control Integers which have been re-defined.

Descriptions of Method Control Integers:

NUMBER NAME VALUE DESCRIPTION
1 IDIMEN Characteristic ¢ .mensicn = displacement

0

1 Characteristic d.meusion = length
2 Characteristic dimension = beam
3 Characteristic dimensicn = draft

2 IRESID 0 Residuary resistance from NRC FSS data
1 Residuary resistance from Taylor, Hamburg C,
or NPL Series data
3 IAPPND 0 SHOP5 Appendage resistance calculations
1 User-supplied appendage resistaance ccefficient
4 IPROP 0 SHOP5 OPC calculations, C. P. propeller
1 SHOP5 OPC calculations, fixed pitch propeller
2 User-supplied ovi:rall propulsive coeffi:ients
14

STeTEte Tt

T T . - - - - . - "
. . e T
RS RN

., - -..54' 1""

R . < ‘; e '_-.‘ "‘- ".

R I TR AT '-.'%." SEE S »"Jq.:‘ I
R BN S PR PO, Y R AT T B, 1 P T E G Tt et Ry 0

S e e e

NUMBER NAME VALUE
5 ISTRUC 0
1
6 IENGIN 0
1
2
3
4
5
7 ICHOOS 0
1
8 IGEN 0
1
2
9 ICOST 0
1
Note:

DESCRIPTION

Homogeneous hull and superstructure

Hybrid: Steel hull and aluminum superstructure

SHOPS5 rubber engines

User-supplied rubber engines

SHOP5 hierarchy and SHOP5 data base
User-supplied hierarchy, SHOP5 data base
SHOP5 hierarchy, user—-supplied data base
User-supplied hierarchy and data base

SEARCH: must satisfy input engine
configuration

DESCRIBE: may use engine hierarchy
SEARCH: may use engine hierarchy
DESCRIBE: must satisfy input engine
configuration

SHOP5 gas turbine generators
SHOP5 diesel generators
User-supplied generator characteristics

Standard cost factors (1977 dollars)
User~supplied cost factors

(1) Re~definition of Method Control Integers may require

additional user-supplied input as follows:

RECORD (5):

Number

O oo P~wW

Name Required Input
IAPPND Record (7)
IPROP Record (8)
IENGIN Record (9)
IGEN Record (10)
1COST Record (11)

Re-definition of OPTIONAL INPUT

Only used if Program Control Integer NOPTN > 0.

This record contains the numbers and new values of the Optional
Input which have been re-defined.

15

e IR WYY

<y

CaliCaiMri . aoul At Sinh A e A B A B mnd . |

Descriptions of Optional Input

VERTICAL ACCELERATION/G, 0% CREW EFFECTIVENESS
VERTICAL ACCELERATION/G, 100% CREW EFFECTIVENESS

DESIGN MARGIN ON EFFECTIVE POWER EHP=(1+DEHP)R*V

SIGNIFICANT WAVE HEIGHT FOR RANGE CALCULATIONS

MARGIN: GROUP 1 WEIGHT (HULL STRUCTURE)
MARGIN: GROUP 2 WEIGHT (PROPULSION MACHINERY)

MARGIN: GROUP 6 WEIGHT (OUTFIT AND FURNISHING)

MARGIN: MACHINERY VOLUME -
MARGIN: SHIP SYSTEMS AND OUTFIT VOLUME

n\-_-_

NUMBER NAME DESCRIPTION
1 M MIDSHIPS FREEBOARD, DESCRIBE MODE
2 cW WATERPLANE COEFFICIENT
3 LCB LONGITUDINAL CENTRE OF BUOYANCY
4 LCF LONGITUDINAL CENTRE OF FLOTATION
5 NP COMPLEMENT
6 NDECK NUMBER OF INTERNAL DECKS
7 NBULK NUMBER OF WATERTIGHT COMPARTMENTS
8 C COMPARTMENT STANDARD OF FLOODING
9 LS SUPERSTRUCTURE LENGTH
10 FFP FREEBOARD AT FORWARD PERPENDICULAR
11 TOS WAVE MODAL PERIOD FOR HW (SEAKEEPING)
12 AMAX
13 AMIN
14 CITTC ITTC CORRELATION ALLOWANCE
15 DEHP
16 DIA PROPELLER DIAMETER
17 NSH NUMBER OF PROPELLER SHAFTS
18 NGEN NUMBER OF ELECTRICAL GENERATORS
19 PG ELECTRICAL POWER INSTALLED
20 PGE AVERAGE CRUISE ELECTRICAL POWER
21 HWR
22 TOR WAVE MODAL PERIOD FOR HWR
23 YIELD YIELD STRENGTH OF HULL MATERIAL
24 DENS DENSITY OF HULL MATERIAL
25 FICE FACTOR FOR ICE STRENGTHENING
26 RAFT MARGIN: MAIN ENGINE RAFTING
27 GEAR MARGIN: GEAR BOX WEIGHT
28 DGl
29 DG2
30 DG3 MARGIN: GROUP 3 WEIGHT (ELECTRICAL)
31 DG5 MARGIN: GROUP 5 WEIGHT (AUXILIARIES)
32 DG6
33 DWB MARGIN: BASIC WEIGHT
34 DWD MARG . DISPOSABLE WEIGHT
35 KGX VCG OF EXTRA BASIC WEIGHT
. 36 KGC VCG OF COMBAT SYSTEM WEIGHT
S 37 A\ SUPERSTRUCTURE VOLUME
N 38 DWM
L 39 DVO
AR 40 DVB MARGIN: BASIC VOLUME
S 41 DVN MARGIN: PERSONNEL VOLUME
H!ﬁ? 42 TD/T NORMALIZED TIME AT DESIGN SPEED
ifgq 43 TC/T NORMALIZED TIME AT CRUISE SPEED
BT 44 TE/T NORMALIZED TIME AT ENDURANCE SPEED
WA
Yo{en?
v
X 16
N -.- '\-,\\"-"'v}
v '-"","A’”g"' " .i . .: ~-i

\ “n\ \} . ,.,\ - \\‘.. . ~. ... - RO -_-’-
él‘n &(&:Qﬁlx. AR TR, \ .:L.\ A TS

\.. - - - o -« e WL a0 XY - A
b

\“

A

3

v

S Note: (1) Optional Input may be re-defined as positive or negative

v numbers, indicating, respectively, whether the new value is

an absolute quantity or a ratio.

B RECORD (6): Re-definition of REJECTION AND SEAKEEPING CRITERIA

-\ Only used if Program Control Integer NLIM > 0.
13 This record contains the numbers and new values of the rejection
N criteria (SEARCH mode) or of the seakeeping criteria (DESCRIBE mode) which
- have been re-defined.

.

™~

‘ (6.1): Re-definition of REJECTION CRITERIA, SEARCH mode only
. Program Control Integers MODE = 0 and NLIM > 0.
‘f_ Description of Rejection Criteria

NUMBER NAME DESCRIPTION RE-DEFINABLE
;j 1 N WET Number of deck wetnesses/hour yes
(. 2 ACCN 4 Vertical acceleration at Station 4/G yes
:1 3 SLAM F Slam force / displacement yes
o 4 S EFF Seakeeping effectiveness yes

’ 5 F MID Midship freeboard no

- 6 C MID Midship coefficient no

Y 7 PROP E Overall propulsive coefficient at yes
s endurance speed

0 8 ENGINE Engine configuration no
kﬁ 9 RANGE Range at endurance speed no

: 10 KG MAX Vertical centre of gravity yes

’ 11 VOLUME Combat system volume yes
N

o
. Note: (1) Only 7 of the 11 rejection criteria may be re-defined, as

42 shown above.
L
{} (6.2): Re-definition of SEAKEEPING CRITERIA, DESCRIBE mode only

- Program Control Integers MODE > (0, NLIM > 0.

o

:: The seakeeping criteria are identical to the first four rejection
" criteria, as shown above.

17

.....

.
PR
DA S WA P

C‘C,(--.‘.g.“.“- R O AN AV S e e B b T Y g 4 e

RECORD (7): User-supplied APPENDAGE RESISTANCE COEFFICIENT

CAPP

Note:

Only used if Method Control Integer IAPPND = 1.
Appendage resistance coefficient.

(1) The appendage resistance is equal to the total ship
frictional resistance multiplied by CAPP.

RECORD (8): User-supplied OVERALL PROPULSIVE COEFFICIENTS

ETAD
ETAC
ETAE

Only used if Method Control Integer IPROP = 2.

Overall propulsive coefficient at design speed.
Overall propulsive coefficient at cruise speed.
Overall propulsive coefficient at endurance speed.

RECORD (9}: ENGINE ALGORITHM DATA

Only used if Method Control Integer IENGIN > 0.

(9.1): User-supplied RUBBER ENGINE DATA
Orly used when Method Control Integer IENGIN = 1.
SPW2 Specific weight of propulsion system (1b/HP; kg/kW).
SFCK Specific fuel consumption of engines, at full power (1b/HP-Hr;
kg/kW-Hr) .
(9.2): SHOP5 Hierarchy and SHOP5 Engine Data Base
{nly used when Method Control Integer IENGIN = 2.
ITYPE Engine configuration per shaft, one of the values below.
= 1, Single gas turbine
= 2, COGAG
= 3, 00GOG
= 4, CODAG
= 5, CODOG
= 6, CODAD
IFUTUR Controls which engine data base is to be used (1980 engine data
hase or 1995 engine data base)
THI1AR Controls which hierarchy is to be used for engine choice,

LI
« e te ™ -
Lot alhoa S0 % o B

A

s

according to the primary consideration (noise generation, gearbox
comaplexity, or progressive power)

18

N ",_"._.‘,"\.'._.'- "
RSN AR
DEIS AL NI

N,

‘A

RS

Sl

laads

a .
R)

o
0

s
4

B

(9.3): User-supplied Hierarchy, SHOPS5 Engine Data Base
Only used when Method Control Integer IENGIN = 3.

ITYPE Engine configuration per shaft (see Record (9.2))

IFUTUR Controls which engine data base is to be used (1980 engine data
base or 1995 engine data base)

HIARK(I) 1=1,6 Input of hierarchy, six numbers corresponding to those
shown for ITYPE in Record (9.2)

(9.4): SHOPS Hierarchv, User-supplied Engine Data Base
Only used when Method Control Integer IENGIN = 4.

ITYPE Engine configuration per shaft (see Record (9.2))

IHIAR Controls which hierarchy is to be used for engine choice,
according to the primary consideration (noise generation,
gearbox complexity, or progressive power)

SPW2B Specific weight of propulsion system, not including engines
(1b/HP; kg/kW)

NTURB Number of gas turbine engines to be input by user.

NAMTUR(I) Name of turbine(I), maximum 16 characters.

POWT(I) Maximum power of turbine(I) (HP; kW).

SFCT(I) Specific fuel consumption of turbine(I) (1b/HP-Hr; kg/kW-Hr).

WTT(I) Weight of turbine{(I) (ton;tonne).

NDIES Number of diesel engines to be input by user.

NAMDIE(I) Name of diesel(I), maximum 16 characters.

POWD(I) Maximum power of diesel(I) (HP; kW).

SFCD(1) Specific fuel consumption of diesel(I) (1b/HP-Hr; kg/kW-Hr).

WID(I) Weight of diesel(I) (ton;tonne).

(9.5): User-supplied Hierarchy and Engine Data Base
Only used when Method Control Integer IENGIN = 5.

ITYPE Engine configuration per shaft (see Record (9.2))

SPW2B Specific weight of propulsion system, not including engines
(1b/HP; kg/kW)

HIARK(I) 1I=1,6 Input of hierarchy, six numbers corresponding to those
shown for ITYPE in Record (9.2)

NTURB Number of gas turbine engines to be input by user.

NAMTUR(I) Name of turbine(I), maximum 16 characters.

POWT(I) Maximum power of turbine(I) (HP; kW).

SFCT(I) Specific fuel consumption of turbine(I) (1b/HP-Hr; kg/kW-Hr).

WTT(1) Weight of turbine(1) (ton;tonne).

19

)
-

N, .

N
<
- NDIES Number of diesel engines to be input by user.
(- NAMDIE(I) Name of diesel(I), maximum 16 characters.
- POWD(I) Maximum power of diesel(I) (HP; kW).
. SFCD(1) Specific fuel consumption of diesel(I) (1b/HP-Hr; kg/kW-Hr).
; WTD(1) weight of diesel(1) (ton;tonne).
A RECORD (1(): User-supplied GENERATOR DATA
- Only used when liethocd Control Integer IGEN = 2.
Y SFCG Specific fuel consumption of generator set (1b.HP-Hr; kg/kW-Hr)
‘ SPGEN specific weight of electrical system (1b/kW; kg/kW)
- RECORD (11): User-supplied COST FACTORS
] Only used when Method Control Integer ICOST = 1.
“his record contains the numbers and new values of the Optional
Input whick have been re-defined.
Description of Cost Factors
. NUMBER NAME DESCRIPTION
1 AK1 HULL (LESS SUPERSTRUCTURE)
2 AK2 SUPERSTRUCTURE
- 3 AK3 LIFT SYSTEM (NOT APPLICABLE)
4 AR4 INSTALLED DIESEL POWER
5 AK5 INSTALLED GAS TURBINE POWER
6 AKe ELECTRICAL SYSTEM
7 AK? AUXILIARY SYSTEM
. 8 AKS§ OUTFIT AND FURNISHING
- 9 AK9 SYIPYARD CONSTRUCTION
o 10 AK10 DESIGN AND ENGINEERING, LEAD SHIP
2 11 AK1] DESIGN AND ENGINEERING, CLASS SHIP
. 12 AK12 CONSTRUCTION SERVICES
13 AK13 SHIPYARD PROFIT, LEAD SHIP
- 14 AK14 SHIPYARD PROFIT, CLASS SHIP
;- 15 AK15 MISCELLANEOUS SURCHARGES, LEAD SHIP
» 16 AK16 MISCELLANEQUS SURCHANRGES, CLASS SHIP
{
<
4
o 20

P RS R

T

FIVPRE.
used are

Note:

%% PUSH '

APPENDIX B

CREATING A NEW FILE (SAMPLE TERMINAL SESSION)

Following is an example of creation of a new data file using
The user's typed values are underlined for clarity. Commands
NEW, DUMP, and EXIT.

The command used to run the program FIVPRE depends on which
computer and operating system is used. In this example, the
command is '""RUN FIVPRE".

$ RUN FIVPRE

FIVPRE

PRE-PROCESSOR FOR SHOP5S

*% READING LIBRARY FILE, PLEASE WAIT **

ARE YOU FAMILIAR WITH THIS PROGRAM ?
ENTER 'Y' OR 'N' => N

FIVPRE is a program which helps you create and edit the input
files for SHOP5, the concept exploration model for frigates and
destroyers. Using FIVPRE, you can easily define the values of
the various parameters that SHOPS requires, change the values of
these parameters, and save the values in a file, which SHOP5 uses
as input.

FIVPRE is a command-oriented program: this means that you type
commands to tell FIVPRE what to do. When you are running FIVPRE,
you will see a prompt 'Comm.ad = >' which means that FIVPRE is
waiting for you to type in a command.

To see a list of all the commands you can use in FIVPRE, type
'HELP' at the 'Command = > ' prompt. The 'HELP' command can
also give a more detailed description of a command.

RETURN' KEY FOR NEXT SCREEN **

Here is a quick overview of a few basic FIVPRE commands:

The 'NEW' command starts a chain of questions which will ask you
for all the parameters you need to create a new SHOP5 input file.

T TR T T TR

The 'DUMP' command saves the current value of all the variables
on a file called FIVIN, which is the input file for SHOP5. If
you specify a file name ir the 'DUMP' command, the data will be
saved in that file as well as in FIVIN.

The 'ENTER' command reads an existing file so you can change it.

The 'CHANGE' command modifies exristing files which have been
ENTERed.

The 'DISPLAY' command displays the value of a variable.
The ‘EXIT' command stops the FIVPRE program.

%% PUSH 'RETURN' KEY FOR NEXT SCREEN **
If you are not familiar with the SHOPS variables, type 'NEW' at
the 'Command = > ' prompt. After you finish with the 'NEW'
command (i.e. when you see the 'Command = > ' prompt again)
type 'DUMP' to save the data you have just defined. To end the
FIVPRE program, type 'EXIT'.
You may also want to find out about the special input
characters. Type 'HELP SPECIAL' at the 'Command = > ' prompt
for an explanation.

Command = > NEW

ENTER TITLE = > SAMPLE INPUT 1, 504 SHIPS, USING POST-PROCESSOR

%% PROGRAM CONTROL INTEGERS **

MODE

0 = SEARCH

1 = DESCRIBE

MODE = > 0

UNITS

0 = INPUT FPS, OUTPUT FPS

1 = INPUT METRIC, OUTPUT FPS

2 = INPUT FPS, OUTPUT METRIC
3 = INPUT METRIC, OUTPUT METRIC

UNITS = > 0

22

- . n Lt N .. . - . R) - - ...‘ . - o ‘--. K . .
T L e e T RS
R . . . Lo . R P A

. P . .
o . A S A .-

Y
F'
»
s
.l
s
[
F
r
a
3
| Sy

. R N)
[P IPW A < L L e T P I P I . RN
N < nihan e e do s ona e M At i W X o C mt

R At Rt A0 AR A A G AR B AR A A S AL A AR S A .—_,T

POST-PROCESSOR

0 = NO, POST-PROCESSOR WILL NOT BE USED
1 YES, POST-PROCESSOR WILL BE USED

POST~PROCESSOR => 1

LEGEND
0 = NO LEGEND
1 = LEGEND OF ABBREVIATIONS WRITTEN ON LINEPRINTER

LEGEND = > 0 (

CHARACTERISTIC DIMENSION

0 - DISPLACEMENT
1 - LENGTH

2 - BEAM

3 - DRAFT

ENTER NUMBER = > 0

DISPLACEMENT: LOW 3800
HIGH 4200
NUMBER OF VALUES 9

LENGTH/DISPLACEMENT RATIO: LOW 7.8
HIGH 8.1 ﬁ
NUMBER OF VALUES &4
PRISMATIC COEFFICIENT: LOW .61
HIGH .62

NUMBER OF VALUES 2 1

BLOCK COEFFICIENT: LOW .46
HIGH .52

NUMBER OF VALUES 7
BEAM/DRAFT RATIO: LOW 3.25
HIGH 3.25

NUMBER OF VALUES 1

LR PR P

23

e Wt . e e - . c e e -

.o N VS Lt T e . - - . LIS I - B . R g .
- . BRI - . . L . R SR . o - . . IR A
Pl L SN . .- L N o . . . N g - e . .,

~ - R . Ve A " S et Tt T e e L T
I N SR WAL U GRETUAE WP RE U W WL WU, WU VT S . V. P PSRN PR WL WL P . L PR, SPRAT Y

v--'—.-w
DRI A AR e . AN
st 0 T T I T IR IR

LA

TR

-

RANGE AT ENDURANCE SPEED = >
COMBAT SYSTEM WEIGHT = > 350
DESIGN SPEED = > 30

CRUISE SPEED => 18
ENDURANCE SPEED = > 15

SEAKEEPING SPEED = > 30

SEAKEEPING WAVE HEIGHT = > 9.843

4000

% METHOD CONTROL INTEGERS **

1 - RESIDUARY RESISTANCE 5 - TYPE OF ENGINES

2 - APPENDAGE RESISTANCE 6 - TYPE OF GENERATORS
3 - PROPULSIVE EFFICIENCY 7 - COST FACTORS

4 - STRUCTURAL MATERIAL 99 - *% EXIT *%

ENTER NUMBER = > 5

TYPE OF ENGINES

SHOP5 RUBBER ENGINES

USER SUPPLIED RUBBER ENGINES
SHOP5 REAL ENGINES

USER SUPPLIED REAL ENGINES

w N - O
[}

ENTER NUMBER = > 2

ENGINE DATA BASE

0 - 1980 ENGINE DATA BASE
1 - 1995 ENGINE DATA BASE

ENTER NUMBER = > 0

ENGINE CONFIGURATION

SINGLE GAS TURBINE

COGAG (COmbined Gas And Gas)

COGOG (COmbined Gas Or Gas)

CODAG (COmbined Diesel And Gas)
CODOG (COmbined Diesel Or Gas)
CODAD (COmbined Diesel And Diesel)

[NV I S RV I O
t

ENTER NUMBER = > 2

24

[}
J
.
— = ’A-l‘l---A‘ALJ

”*.—"_v\.-w. et Yl I St i i ol s Sl A bt et iaA harl s o/t it a2t ied Saobisn iy Suliah et il o o et At St it S St Sl Gt e AR St s

CONFIGURATION CHANGE

0 ~ SHOP5 MUST USE THIS CONFIGURATION
1 - SHOP5 MAY CHANGE CONFIGURATION

ENTER NUMBER = > 0

*% METHOD CONTROL INTEGERS **

ENTER NUMBER = > 99

1 - RESIDUARY RESISTANCE 5 - TYPE OF ENGINES -
2 - APPENDAGE RESISTANCE 6 - TYPE OF GENERATORS 7
3 - PROPULSIVE EFFICIENCY 7 = COST FACTORS }ﬁ
4 - STRUCTURAL MATERIAL 99 - *¥% EXIT ** =
-

t

OPTIONAL INPUT

- GEOMETRY & COMPLEMENT
- SEAKEEPING

- POWERING AND MACHINERY
- STRUCTURE

WEIGHT AND STABILITY

- VOLUME

- MISSION

- EXIT

O AW~
t

O

ENTER NUMBER => 1

GEOMETRY AND COMPLEMENT

- MIDSHIPS HULL DEPTH

- WATERPLANE COEFFICIENT

- LONGITUDINAL CENTRE OF BUOYANCY

- LONGITUDINAL CENTRE OF FLOTATION
- COMPLEMENT

NUMBER OF INTERNAL DECKS

- NUMBER OF WATERTIGHT COMPARTMENTS
- COMPARTMENT STANDARD OF FLOODING
-~ SUPERSTRUCTURE LENGTH

- EXIT

A=IVole . BN Be RV, BN S RN N
|

O

ENTER NUMBER => 5
CURRENT VALUE (DEFAULT) = N/(DISP**(2/3)) = 1.0
USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE
ENTER N: COMPLEMENT = > -.9

25

PN
PR N

N T W Y YT T TR T T BRGNS SR el o s ane are e o o T Y YT T T T -y TV T YT Twary

GEOMETRY AND COMPLEMENT

- MIDSHIPS HULL DEPTH
- WATERPLANE COEFFICIENT

- LONGITUDINAL CENTRE OF BUOYANCY |
-~ LONGITUDINAL CENTRE OF FLOTATION \
- COMPLEMENT c
NUMBER OF INTERNAL DECKS ’

- NUMBER OF WATERTIGHT COMPARTMENTS
- COMPARTMENT STANDARD OF FLOODING
- SUPERSTRUCTURE LENGTH

- EXIT

OO 0SS W
[}

(Nw}

ENTER NUMBER = > 9
CURRENT VALUE (DEFAULT) = Ls/L = 0.5

USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE i
ENTER Ls: SUPERSTRUCTURE LENGTH = > -.58

GEOMETRY AND COMPLEMENT

MIDSHIPS HULL DEPTH

- WATERPLANE COEFFICIENT

- LONGITUDINAL CENTRE OF BUOYANCY

~ LONGITUDINAL CENTRE OF FLOTATION
-~ COMPLEMENT

NUMBER OF INTERNAL DECKS

-~ NUMBER OF WATERTIGHT COMPARTMENTS
~ COMPARTMENT STANDARD OF FLOODING
~ SUPERSTRUCTURE LENGTH

EXIT

4

O 000~ DI P e
{

\O

ENTER NUMBER => 99

OPTI0NAL INPUT

-~ GEGHMETRY & COMPLEMENT
- SEAKEEPING

~ POWERING AND MACHINERY
- STRUCTURE

WEIGHT AND STABILITY

-~ VOLUME

~ MTSSION

-~ RXIT

O~ DWW N e
]

N

ENTER NUMBER = > 5

26

RN ST . . RN
S L M, . N . . ST, > . L . R
e et e T et T AR P T e e . A
&(&ﬁnﬁn -AL__’LIA _\u;n.‘\ Y A e e e e e A P AR A e A T R WL AR

R
oA N

&

S e - e
TR PRt
PR
[P
S
‘e, TR, 10 e e

,4
L}

D

.-
.
x

WEIGHT AND STABILITY

[o BN B NV IR SN SN

o

MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:

VCG OF
VCG OF
EXIT

ENTER NUMBER =

HULL STRUCTURE WEIGHT
PROPULSION MACHINERY WEIGHT
ENGINE RAFTING

GEAR BOX

ELECTRICAL WEIGHT
AUXILIARIES WEIGHT

OUTFIT & FURNISHING WEIGHT
BASIC WEIGHT

DISPOSABLE WEIGHT
EXTRA BASIC WEIGHT
COMBAT WEIGHT

> 3

CURRENT VALUE (DEFAULT) = - 0.0
USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE
ENTER RAFT: MARGIN: MAIN ENGINE RAFTING = > 5

—

WEIGHT AND STABILITY

VW VWM =

i0
11
99

MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:
MARGIN:

VCG OF
VCG OF
EXIT

ENTER NUMBER =

HULL STRUCTURE WEIGHT
PROPULSION MACHINERY WEIGHT
ENGINE RAFTING
GEAR BOX
ELECTRICAL WEIGHT
AUXILIARIES WEIGHT
OUTFIT & FURNISHING WEIGHT
BASIC WEIGHT
DISPOSABLE WEIGHT
EXTRA BASIC WEIGHT
COMBAT WEIGHT

> 8

CURRENT VALUE (DEFAULT) = - 0.0
USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE

ENTER dWb: MARGIN: BASIC WEIGHT (WB=W1+W2+W3+W5+W6) =

> =-.025

27

I .-, _A_“_ . . o .
& [. . LN
NI LT LN

GRS RRETPUR Y. U T YUY . TP U G S)

PO S WY R IIRY Y NN

:_':.j

MRS I I I 2 A A

WEIGHT AND STABILITY

- MARGIN: HULL STRUCTURE WEIGHT

- MARGIN: PROPULSION MACHINERY WEIGHT
= MARGIN: ENGINE RAFTING

- MARGIN: GEAR BOX

MARGIN: ELECTRICAL WEIGHT

- MARGIN: AUXILIARIES WEIGHT

-~ ’IARGIN: OUTFIT & FURNISHING WEIGHT
- ARCIN: BASIC WEIGHT

~ MARGIN: DISPOSABLE WEIGHT

10 - VCG OF EXTRA BASIC WEIGHT

11 - ¥CG OF COMBAT WEIGHT

99 - EXIT

Ve BN NV, B S BN UCRN NI
]

ENTER NUMBER = > 9

.

OPTIONAL INPUT

L

-

o ~ EOMETRY & COMPLEMENT
A - SCAKEEPING

1
2
3 =~ POWERING AND MACHINERY
4 -~ STRUCTURE

5 ~ WEIGHT AND STABILITY

6 - VOLUME

7 = MTSSION

9 ~ EXIT

9

ENTEX NUMBER = > 6

VOLUML

1 - SUPERSTKUCTURE VOLUME

2 - MARGIN: MACHINERY VOLUME

3 - MARGIN: SHIP SYSTEMS & OUTFIT VOLUME
4 ~ M:AZRGIN: BASIC VOLUME

5 - MARCIN: PERSONNEL VOLUME
99 ~ ENIT

ENTER NUMBER = > 1
CURRENT VALUE {(DEFAULT) = Vs/Vt = 0.25
USE WLUATIVE NUMBLR FOR RATIO;
PGSITIVE NUMBERS FUR FIXED VALUE
ENTER Vs: SUPZRSTRUCTURE VOLUME = > -,28

28

.....
PR R P,

ouns W =
|

9

TN YT WET N YT R TR YT

VOLUME

SUPERSTRUCTURE VOLUME

MARGIN: MACHINERY VOLUME

MARGIN: SHIP SYSTEMS & OUTFIT VOLUME
MARGIN: BASIC VOLUME

MARGIN: PERSONNEL VOLUME

EXIT

ENTER NUMBER = > 99

OPTIONAL INPUT

Wy wnswh —
i

(el

GEOMETRY & COMPLEMENT
SEAKEEPING

POWERING AND MACHINERY
STRUCTURE

WEIGHT AND STABILITY
VOLUME

MISSION

EXIT

ENTER NUMBER = > 99

REJECTION CRITERIA

O

O~y Ot o~
i

NUMBER OF DECK WETNESS PER HOUR
VERTICAL ACCELERATION AT STATION 4
SLAM FORCE/DISPLACEMENT
SEAKEEPING EFFECTIVENESS

OPC AT ENDURANCE SPEED

VERTICAL CENTRE OF GRAVITY

COMBAT SYSTEM VOLUME

EXIT

ENTER NUMBER = > 7

CURRENT VALUE (DEFAULT) = 0.125

29

AT T T VTN TR AT AN I TN S, . e W W L N W e Tt Ye T .

VOLUME: MIN. Vc (USE NEGATIVE NUMBER FOR Vc/Vt) => -.15

———

LT R R e e R R R T RS T T R AT T T W-T

REJECTION CRITERIA

- NUMBER OF DECK WETNESS PER HOUR
- VERTICAL ACCELERATION AT STATION 4
- SLAM FORCE/DISPLACEMENT

- SEAKEEPING EFFECTIVENESS

OPC AT ENDURANCE SPEED

- VERTICAL CENTRE OF GRAVITY

- COMBAT SYSTEM VOLUME ’
- EXIT

O~V W -
|

O

ENTER NUMBER = > 99

%*%% END OF SEQUENTIAL INPUT *¥¥
Command = > DUMP
FILE NAME = > SAMPLE
WRITING DATA TO SAMPLE
WRITING DATA TO FIVIN
Command = > EXIT

Yekdck FINISHED s

FORTRAN STOP

R BARA Al Fadh et e ol b n Ae i b eu s SRS - B A il wuate R A ARERIL ol i taly ch il Vi MR AR AL Phlk Sl " i Sk AR Ll oall Sl Ll SRR tal sat Sl Sl Shd Sl Al A
L.

APPENDIX C

EDITING AN EXISTING FILE (SAMPLE TERMINAL SESSION)

Following is an example of editing an existing file, EX2, to
create a file named EX3. The user's typed values are underlined for
clarity. Commands used are HELP, FIND, ENTER, DISPLAY, CHANGE, DUMP, and
EXIT.

Note: The command used to run the program FIVPRE depends on which
computer and operating system 1s used. In this example, the

command is “"RUN FIVPRE".

$ RUN FIVPRE
FIVPRE

PRE-PROCESSOR FOR SHOP5S

*% READING LIBRARY FILE, PLEASE WAIT *%

ARE YOU FAMILTIAR WITH THIS PROGRAM ?
ENTER 'Y' OR 'N' => Y

h Command = > HELP

o *%% FIVPRE COMMANDS AND TOPICS *%¥%

o CHANGE EXIT

- DEFAULT FIND
DISPLAY HELP
DUMP NEW
ENTER Special

For help on a particular command, type
HELP command

Command = > HELP FIND
FIND
This command is used to find the name of a data file, based on

its title record. After entering the command FIND, the user is
prompted for a search key. If the user hits the return key

31

. . -t - C e .. R - :
ME P S AT LA S U U ST TP T Ty v ¥ Ul W, WP S o aa b M P P . ot o et o a % o AT - VT e W WA SPOL W W WPy PRI WA W Sk Boass Aenh dio

POy o

'-,‘. Lt T .
POl S S, S S T

R A Atadi® S ARM At uies et i ot Sadb i Bl Rl et S Sak el Bal T e v Mt T ——y——Trm

without entering a search string, the program will print all the
entries in the library file; otherwise, the program prints the
title and file name of the files in its library which ccntain the
search string in their title.

Format:
FIND

Command = > FIND
ENTER SEARCH STRING
(TO DISPLAY ALL ENTRIES, JUST HIT RETURN) = > HELI
SHOP5 EXAMPLE 1, 4000 TON SHIP, HELICOPTER
DATA FILE = EX1
SHOPS EXAMPLE 2, 4000 TON SHIP, HELICOPTER, COGAG
DATA FILE = EX2
Command = > ENTER EX2

READING DATA FROM EX2

Command = > DISPLAY METHOD CONTROL INTEGERS

METHOD CONTROL INTEGERS

CHARACTERISTIC DIMENSION = Displacement

RESIDUARY RESISTANCE = NRC FSS ™ata

APPENDAGE RESISTANCE = SHOP5 Calculations

PROPULSIVE COEFFICIENT = SHOP5 Calculations, C.P. Propeller
STRUCTURAL MATERIAL = Homogenous Hull and Superstructure (Steel)
*PROPULSION SYSTEM = SHOPS5 Engine Data Base

ENGINE CONFIGURATION SELECTION = May Change Selected Engine Confi_juration
GENERATORS = SHOP5 Gas Turbine Generators

COST FACTORS = SHOPS5 Cost Factors (1977 Dollars)

Command = > DISP ENGINE DATA

*% AMBIGUOUS INPUT *x

1 - IFUTUR: CHOICE OF SHOP5 ENGINE DATA BASE
2 - RECORD 9: ENGINE ALGORITHM DATA
ENTER SELECTION NUMBER (OR 99 FOR EXIT) => 2

PROPULSION SYSTEM

Engine Configuration = COGAG
1980 Engine Data Base

Hierarchy is NOISE

Command = > CHANGE ENGINE CONFIG

32

- . -
. « .
et T e . . L . . LR N BRERY
- A ssedie smidhe ISP WP D W D - P A T ST - N .
VWA S, | P N S P B . T T o R S T S

RANEANL M R S R Sa e ai sl s AN EalEr Attt it o it et ettt et e S A e h it A S A R R R A e

*% AMBIGUOUS INPUT **

1 ICHOOS: ENGINE CONFIGURATION SELECTION

2 TITYPE: ENGINE CONFIGURATION PER SHAFT
ENTER SELECTION NUMBER (OR 99 FOR EXIT) = > 2

ENGINE CONFIGURATION

- SINGLE GAS TURBINE

- COGAG (COmbined Gas And Gas)

- COGOG (COmbined Gas Or Gas)

CODAG (COmbined Diesel And Gas)

- CODOG (COmbined Diesel Or Gas)

-~ CODAD (COmbined Diesel And Diesel)

[« JRC EES SR UCEE SR
)

ENTER NUMBER = > 4

ENGINE CONFIGURATION SELECTION

0 - SHOP5 MUST USE THIS CONFIGURATION
1 - SHOP5 MAY CHANGE CONFIGURATION

ENTER NUMBER = > 1

GEARBOX HIERARCHY

0 - SHOP5 GEARBOX HIERARCHY
1 - USER SUPPLIED GEARBOX HIERARCHY

ENTER NUMBER = > 0

GEARBOX HIERARCHIES

GEARBOX SELECTION BEGINS AT THE BOTTOM OF A COLUMN AND BUBBLES
UPWARDS, UNTIL THE USER-SELECTED CONFIGURATION IS ENCOUNTERED.
SHOP5 ATTEMPTS TO SATISFY POWER REQUIREMENTS WITH THIS
CONFIGURATION; IF THIS CANNOT BE ACCOMPLISHED, THE NEXT
(UPWARDS) CONFIGURATION IS TRIED, UNTIL EITHER SATISFACTORY
ENGINES ARE FOUND, OR ALL POSSIBILITIES ARE TRIED.

33

e e AT e e e e L S et . [TPOE - .
Rl D T N B A R) PR
. e . . R N T T - - (R ST .

ee et T N Vo, < et e - NSRS B . L. . - L.
AP VP S S WL WU WL S S, W, WA WA O W S AP AU I W TP - W A Vi O WY N SO SUreny - TR U, W L P, P . S, PP P

SELECT ONE OF THESE HIERARCHIES

NOISE = 0 GEARING = 1 POWER = 2
CODAG COGAG
CODAG COGAG CODAG
COGAG COGOG COGOG
CODOG CODOG CODOG
COGOG CODAD CODAD
SINGLE SINGLE SINGLE

ENTER NUMBER = > 0
Command = > DISPLAY METHOD CONTROI INTEGERS

HETHOD CONTROL INTEGERS

CHARACTERISTIC DIMENSION = Displacement

RESIDUARY RESISTANCE = NRC FSS Data

APPENDAGE RESISTANCE = SHOPS5 Calculations

PROPULSIVE COEFFICIENT = SHOP5 Calculations, C.P. Propeller

STRUCTURAL MATERIAL = Homogenous Hull and Superstructure (Steel)
“PROPULSION SYSTEM = SHOPS Engine Data Base

ENGINE CONFIGURATION SELECTION = May Change Selected Engine Configuration
GENERATORS = SHOP5 Gas Turbine Generators

COST FACTORS = SHOP5 Cost Factors (1977 Dollars)

Command = > CHANGE GENERATOR TYPE

TYPE OF GENERATORS

0 - SHOP5 GAS TURBINE GENERATORS
1 - SHOP5 DIESEL GENERATORS

2 - USER SUPPLIED GENERATORS
ENTER NUMBER = > 1

Command = > DISPLAY OPTIONAL INPUT

RE~DEFINED OPTIONAL VARIABLES ARE:

N: COMPLEMENT = 200.0000

Ls: SUPERSTRUCTURE LENGTH = -0.5750

RAFT: MARGIN: MAIN ENGINE RAFTING = 50.0000

dWb: MARGIN: BASIC WEIGHT (WB=W1+W2+W3+W5+W6) = -0.0200
*'s: SUPERSTRUCTURE VOLUME = -0.2900

34

*
g

e M.
« ta

Command = > CHANGE LS
DEFAULT VALUE IS Ls/L = 0.5
CURRENT VALUE IS -0.5750
USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE

ENTER Ls: SUPERSTRUCTURE LENGTH = > DEF
Command = > CHANGE VS
DEFAULT VALUE IS Vs/Vt = 0.25
CURRENT VALUE IS -0.2900
USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE
ENTER Vs: SUPERSTRUCTURE VOLUME = > DEF
Command = > CHANGE GEAR
CURRENT VALUE (DEFAULT) = 0.0
USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE
ENTER GEAR: MARGIN: GEAR BOX WEIGHT = > 50
Command = > CHANGE KGC
CURRENT VALUE (DEFAULT) = KGe¢/D = 0.70
USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE
ENTER KGc: KG OF We => -,70
Command = > DISPLAY OPT INPUT

RE-DEFINED OPTIONAL VARIABLES ARE:

N: COMPLEMENT = 200.0000

RAFT: MARGIN: MAIN ENGINE RAFTING = 50.0000

GEAR: MARGIN: GEAR BOX WEIGHT = 50.0000

dWb: MARGIN: BASIC WEIGHT (WB=W1+W2+W3+W5+W6) = -0.0200
KGe: KG OF We = ~0.7000

Command = > DISPLAY ALL

TITLE = SHOP5 EXAMPLE 2, 4000 TON SHIP, HELICOPTER, COGAG

PROGRAM CONTROL INTEGERS

MODE = Describe

INPUT/OUTPUT UNITS = Input - FPS, Output - FPS
DISK FILES FOR POST-PROCESSOR ? = No
LINEPRINTER OUTPUT ? = No

LEGEND OF ABBREVIATIONS WITH OUTPUT ? = No

*% PUSH 'RETURN' KEY FOR NEXT SCREEN *=*

. e . e L TR A JRRTA I e S
Pt o, et o AT et F T I
) D A L R e U .

‘.y.‘ e
.) Py

o - - A L T B
o . e P -, . ot T B A A L .. .-
A s A A A e i e A AL N T S VTV . YR VL TR N N IR S0P P T T W P SO PR Oy .. ¥

‘ " 4 »

L
»

W

e I T e P e e A B S A P AR R A 20 e A R AN At

PRIMARY INPUT

SHIP NUMBER

1
“ISPL 4000.0
7 RM 8.10
CP 0.620
B 0.500
E/T 3.200
WC 400.00
VD 30.00
ve 18.00
YE 15.00
VW 30.00
HW 9.840

%% PUSH "RETURN' KEY FOR NEXT SCREEN *

5 THOD CONTROL INTEGERS

CHARACTERISTIC DIMENSION = Displacement

REZSIDUARY RESTISTANCE = NRC FSS Data

APPENDAGE RESISTANCE = SHOPS5 Calculations

PROPULSIVE COEFFICIENT = SHOP5 Calculations, C.P. Propeller

STRUCTURAL MATERIAL = Homogenous Hull and Superstructure (Steel)
* PROPULSION SYSTEM = SHOPS Engine Data Base

ENGINE CONFIGURATION SELECTION = May Change Selected Engine Configuration

*GENERATORS = SHOPS Diesel Generators
(ST FACTORS = SHOPS5 Cost Factors (1977 Dollars)

%% PUSH 'RETURN' KEY FOR NEXT SCREEN ¥

RE-DEFINED OPTIONAL VARIABLES ARE:

N: COMPLEMENT = 200.0000

FAFT: MARGIN: MAIN ENGINE RAFTING = 50.0000

CFAR: NARGIN: GEAR BOX WEIGHT = 50.0000

2iWb: MARGIN: BASIC WEIGHT (WB=W]1+W2+W3+W5+W6) = -0.0200
Fi.o; KG OF We = =0.7000

36

At A T e et et

e T T T V(Y Ve Iy Y Yy VI w—mrwny

NO RE-DEFINED SEAKEEPING CRITERIA

**% PUSH 'RETURN' KEY FOR NEXT SCREEN *%*

PROPULSION SYSTEM

Engine Configuration = CODAG

1980 Engine Data Base

Hierarchy is NOISE

Command = > CHANGE TITLE

ENTER TITLE = > SHOPS5 EXAMPLE 3, 4000 TON SHIP, CODAG
Command = > DISP TITLE

TITLE = SHOP5 EXAMPLE 3, 4000 TON SHIP, CODAG

) Command = > DUMP
[FILE NAME = > EX3

*% THIS FILE ALREADY EXISTS *

ad
o DO YOU WANT TO REPLACE IT WITH THE CURRENT FILE ?

o IF NOT, TRY THE 'DUMP' COMMAND AGAIN, WITH A NEW FILE NAME
- REPLACE ? ENTER 'Y' or 'N' = > Y

WRITING DATA TO EX3
WRITING DATA TO FIVIN
Command = > EXIT
s%dk FINISHED *¥%%*

FORTRAN STOP

37

Te - . “a . - - I T Lot -t L S . oo

)
s . . ER |
s s e e
T e, B LI A L e e .
YA T ARAYY LI TR T PO T A A UL T R B R T e e e e N . ot
IO N W TP I WL P NI APV W W S T TPy YR O) G T . . S MW) L P LW RDRTGEN W F PANG SO U G YA 1 OF T | PG § W ¥ S W W

a'a'e

. e
+ R

Ve, A
4 A&7

»

5&55Qn

.l.l.l*.‘/ﬂ‘
WA,

s

APPENDIX D

MACHINE DEPENDENCIES

FIVPRE is written in VAX-11 FORTRAN V3.0 on a VAX-11/750
computer, using the VMS operaring system. It conforms to the ANSI
standard FORTRAN of 1977, except for the following features:

FIVPRE uses the character § in FORMAT statements to suppress a
line feed after a WRITE statement. This feature is used to position the
cursor on the same line as the prompt after a prompt is written on the
terminal. Removing the $ from the FORMAT statements will not affect the
execution of the program, except that responses to the prompts will have
to be entered on a new line.

The OPEN and CLOSE statements are Standard FORTRAN 77 in syntax,
but other computers may not iuplement these statements in the same way
that the VAX does. The parameter TOSTAT = IOVAL is used in the OPEN
statement to detect an error while trying to open a file; FIVPRE assumes
that there has been no error :f TOVAL has the value of 0 after the OPEN
statement has executed.

The device numbers used in READ and WRITE statements are NTTY,
NDISK,and NDISK2? (see Appendix E.1.), and their values are set in the main
program unit FIVPRE. The device numbers for terminal and disk on other
machines may be different fron those cn the VAX.

38

Sl M s A¥e Sun SA ha te Ste ol duus g it dh N e " S i g cwL e

APPENDIX E

GENERAL PROGRAM STRUCTURE OF FIVPRE

E.1 DATA STRUCTURES

FIVPRE uses common blocks to hold the values of all the variables

for SHOP5 input. Common blocks are also used to hold flags for these
input variables to indicate whether or not a variable has been defined.

The common blocks for SHOPS5 input variables are:

COMMON/NO1/TITLE

COMMON/NO2 /MODE , INOUT, IPOST, ILPT, ILEGND

COMMON/NO3A1/XXXLO,XXXHI,I1,CRMLO,CRMHI,I2,CPLO,CPHI,I3,CBLO,
CBHI,I14,BOTLO,BOTHI,15,E,WC,VD,VC,VE, VW, HW

COMMON/NO3A2/XXX(11),CRM(11),cP(11),CB(11),BOT(11),wWCc2(11),
vD2(11),vCc2(11),VE2(11),VvW2(11),HW2(11),NSHIPS

COMMON/NO4/IDIMEN, IRESID, IAPPND, IPROP, ISTRUC, IENGIN, ICHOOS, IGEN, ICOST

COMMON/NOS5/0OPTVAR(44)

COMMON/NO6/REJECV(11)

COMMON/NO7/CAPPU

COMMON/NO8/ETAD,ETAC,ETAE

COMMON/NO9/SPW2,SFCR, ITYPE, IFUTUR, IHIAR,HIARK(6) ,SPW2B ,NTURB,
POWT(20) ,SFCT(20),WIT(20) ,NDIES, POWD(20),SFCD(20) ,WTD(20)

COMMON/NO9CH/NAMTUR(20) , NAMDIE(20)

COMMON/NO10/SFCG,SPGEN

COMMON/NO11/AK(16) ,NCOST

COMMON/NUMBER /NCON, NOPTN, NLIM

The common blocks for the flags are:

COMMON/NO1A/FLAG1
COMMON/NO2A/FLAG2(5)
COMMON/NO3A/FLAG3S(12),FLAG3D(11,11)
COMMON/NO4A/FLAG4(9)
COMMON/NOS5A/FLAGS5(44)
COMMON/NO6A/FLAG6(11)
COMMON/NO7A/FLAG7
COMMON/NO8A/FLAGS
COMMON/NO9A/FLAG9(6)
COMMON/NO10A/FLAGLO
COMMON/NO11A/FLAG11(16)

39

"

. e - - -
MG LAt and AVl Sab g A S AN Al DRNARIAT S Wl G et S o St 8 < dv e gs e 2 ani e T T T - r——Ty

The other important common blocks are those which set the device
numbers for input and output:

COMMON/DEVICE/NTTY ,NDISK,NDISK2

Other common blocks are described with the subtroutices which use
them.

E.2 ALGORITHM OF MAIN PROGRAM UNIT FIVPRE

" In general, the body of the main program unit is a l20p which
A accepts a command from the terminal, performs the appropriate action,
~f: accepts another command from the terminal, performs the appro»riate

action, and so on. The loop ends when the command is "EXIT".
;; The pseudocode description gives more detail:
o Begin

$ Initialize all flags and variables
$ Read in library file and update library data

;; Repeat

N Accept a line of input from the terminal

. $ Process the line of input (break it up into a word list)
[$ Determine which command is meant

H;: I1f command is "CHANGE" then

$ Change the value of the specified variable
. Else if command is "DEFAULT" then

N $ Display the default value of the specified variable
= Else if command is "DISPLAY" then
b $ Display the current value of the specified variable
'jf Else if command is "DUMP" then
Y $ Write the data to a disk file
) Else if command is "ENTER" then
(- $ Read in data from a disk file
L Else if command is "FIND" then
" $ Look for search key in the list of titles
" Else if command is ""HELP" then
N $ List all the commands if no command is specified, or
e list the information on the specified command

= Else if command is "NEW" then
S $ Change the values of all the variables
End if
Until command is "EXIT"
e Write the library data to the library file
5 End

40

.-.—-.1-\' "—\%} -.(“»."__-\‘ } \‘.-. '\~ n' . -)) SN N
.0 ‘én.'\rkl.\;b\.hn;n \-- nl\l PP Ay T .x-:.-. '\-x..‘“‘;';\.:g;.' e "L'-“:R'"\-;L- L ..,.-

The lines marked with a dollar sign (§) indicate that a
subroutine is called to perform that action.

The subroutines do most of the work in the program. They fall
into 4 main categories:

(1) Command processing subroutines.
There is only 1 subroutine in this category. This subroutine
takes a word of user input and determines which command it corresponds to.

(2) Dictionary subroutines.
These subroutines access the dictionary, a data block which

contains the names and descriptions of all the SHOP5 input variables. One
of the subroutines determines which variable is being specified by the
user; another subroutine finds the description of a variable, given its
code; another finds the description of the default value of a variable,

given its code.

(3) Command execution subroutines.
These subroutines carry out the action specified by a command,

e.g. change the value of variable, dump the data to a file.

(4) Utility subroutines.

These subroutines perform a variety of tasks. Some of these
tasks are: breaking a line of input into a list of words, converting a
character string to a numeric value, capitalizing the alphabetic
characters in a string, stripping leading blanks from a character string.

All these subroutines are described in more detail in following

appendices.

DELANR A* A o B A B 4 "G iride Hie i’ S d- S ol Sl Bah Sl teh endl Al Mafh Seih Wl . U i ey S Ot T T T TTTTITITT——— R e g

APPENDIX F

COMMAND PROCESSING SUBROUTINES

This category of subroutines contains only one subroutine, the
integer function ICMDS.

Integer Function ICMDS
Purpose:

1CMDS takes a word (a character string) and looks through a
dictionary to find a command that matches the word. The dictionary is an
array containing the command words. A word is considered to match a
command if the letters of the word are the same as the first letters of
the command. For example, "EX" is a match for "EXIT". 1If there is no
match, ICMDS is given the value -1 and control is returned to the main
program. If there is more than one match, ICMDS prints a message and
returns to the main program with a value of -2. If there is a unique
match, the value of ICMDS is the position of the command in the array.

Arguments:

WORD, LENGTH

where
WORD = the word to be tested
LENGTH = the length of the word
Algorithm:

ICMDS looks for WORD in each entry of the command dictionary,
using the FORTRAN function INDEX, and counts the number of entries which
start with the character string in WORD. If the count is 0, the value of
ICMDS is set to -1. If the count is greater than 1, ICMDS prints a
message saying that the command is not unique, and then prints a list of
the all the commands which could be specified by WORD. If the count is 1,
the value of ICMDS is set to the position of the matching command in the
array.

42

- et .t A . . PO .
R R TN FE R O . . Ca s DO P
Ll Wt e E e X - - s -

et R e N
. NI SR AT R S * -
PO PR WA T VI U AP G PN P SR Ry S S -

APPENDIX G

THE FIVPRE DICTIONARIES AND ASSOCIATED SUBROUTINES

G.1 DICTIONARY STRUCTURE

The FIVPRE dictionaries are character arrays. There are three
dictionaries: the abbreviation dictionary, the description dictionary, and
the default value dictionary. Each dictionary entry refers to a SHOPS
input variable through a l0-character prefix. The structure of the prefix
1s

RR.SS.VVV.

where RR is the record number of the variable, SS is the subrecord number
of the variable, and VVV is the variable code of the variable.

For example, a typical dictionary entry would be
'05.02.000.Cw: WATERPLANE COEFFICIENT'.
For this entry, the record number is 5 and the subrecord number is 2.

There are several reasons for using the prefix to identify a
variable. One reason is that the dictionary does not need to be ordered
when the prefix is used. The identification of the variable is
independent of its position in the array. Therefore adding new entries to
the dictionary is easy, since the dictionary does not have to be
rearranged each time a new entry is added. Another reason for using the
prefix is that more than one entry can refer to the same variable. This
feature is especially useful in the dictionary of abbreviatioms, since
there may be several abbreviations which refer to the same variable.

The FIVPRE dictionaries are contained in the common blocks

COMMON/NAMLST/SNAMES , LNAMES
COMMON/VALUES /DEFVAL

where SNAMES is the abbreviation dictionary, LNAMES is the description
dictionary, and DEFVAL is the default value dictionary.

R A S ™ IR w e T T e e Apame S an
I A i NI R e i M Al i i i i it ofiae diat At St it Sias S Baf et e A A g A it e hes Arechie G o |

G.2 DICTIONARY SUBROUTINES

G.2.1 Subroutine DICT

Purpose:

DICT uses the abbreviation dictionary and the description
dictionary to identify which variable is being specified by a word list. |
DICT consults the abbreviation dictionary first, looking for an exact ’
match. The method used is a simple linear search. If no match is found,
DICT then searches through the description dictionary. A series of linear
searches is used to look through the description dictionary. If a match
is found, DICT returns the codes for record number, subrecord number, and
variable number. [f there is more than one match, but less than 15
matches, DICT displays the possible choices and asks the user to pick one.
If there are more than 15 matches, DICT prints a message telling the user
that the description is too ambiguous. If there are no matches, DICT sets
the flag FOUND te false.

Arguments:

BEGIN, RECNUM, SUBREC, VARCOD, FOUND

where
BEGIN = position in word list to start processing from
RECNUM = character code for record number
SUBREC = character code for subrecord number
VARCOL = character code for variable number
FOUND = a flag which returns true if a match is found, false if

no match is found

Comunron Slocks:

COMMON/NAMLST/SNAMES,LNAMES (see Appendix G.l.)
COMMON/CHARS /WRDLST (see Appendix I.5.)
COMMON/WRDVAL/WRDLEN,NOWRDS (see Appendix I.5.)
Algorithm:
Begin
Set search string = first word to be processed in WRDLST
Repzat

Search through abbreviation dictionary
If no match, add next word in word list to search string
Lantil a mateh is found or search string is too long

A]

e 44

2

- o &

L]
:i If match is found, then

Set values of RECNUM, SUBREC, and VARCOD
Set FOUND to true
RETURN

Else
Set current word = first word to be processed in WRDLST
While not at end of WRDLST and more than 1l matching entry do
Search through description dictionary and set dictionary flag
for each entry which doesn't contain the current word
Set current word = next word in WRDLST
End while
If number of matching entries = 1 then
Set values of RECNUM, SUBREC, and VARCOD
Set FOUND to true
RETURN
End if
If numbe. of matching entries > 15 then
Write a message
Set FOUND to false
RETURN
End if
If number of matching eniries > 1 and < 15 then
Remove duplicates from matching entries (i.e. choices which
refer to the same variable)
Write list of choices and read user's choice
If choice is "none of the above'" then
Set FOUND to false
RETURN
Else
Set values of RECNUM, SUBREC, and VARCOD
Set FOUND to true
RETURN
End 1f
End if
If number of matching entries = 0 then
Write message
RETURN
End if
End if
End

PUR R, L, P LI . W e Bt .. LI Y. S P S ety 0 Sttt T P - P W) tdand

T WY T WY, W~
AEAaAAR S el Sl Paia Sal b Sal AA R #i ShE Shh Sl A S TR Sl el

DO A

G.2.2 Subroutine GETDES

Purpose:

GETDES s=arches the description dictionary to find the
description corresponding to the given record number, subrecord number,
and variable numbter.

Arguments :

RECNUM, SUBREC, VARCOD, LENGTH, DESCR

where
RECNUM = character code for record number
SUBREC = character code for subrecord number
VARCOD = character code for variable number
LENGTH = number of characters in the description (DESCR)
DESCR = the character string which is the description of the

variable
Common blocks:
COMMON/NAMLST/SNAMES ,LNAMES (see Appendix G.l.)
Algorithm:
GETDES creates a search string by concatenating RECNUM, a period,
SUBREC, another period, VARCOD, and another period. Then GETDES uses a
linear search through the entries in the description dictionary LNAMES and

returns the first description which contains the search string in its
prefix.

G.2.3 Subroutine GETDFT

Purpose:

GETDFT i: similar to GETDES. It searches through the default
value dictionary to find the entry which contains the given record number,
subrecord number, and va:riable number in its prefix.

Arguments:

RECNUM, SUBREC, VARCOD, LENGTH, DESCR
where

RECNUM = character code for record number
SUBREC = character code for subrecord number
VARCOD

character code for variable number

Cab o SR R GGl e ivEL Sl Sriit S i Ll At A iU el et Ac aiinapC S ettt n A AR e LW Rl - B

Y

”
b

[

o

——v
Ll
. i

]
o

TS
aaad
o
.
"

;}f LENGTH = number of characters in the description of the default
- value

g . DESCR = the character string which is the description of the
{575 variable's default value

- Common blocks:

COMMON/VALUES/DEFVAL (see Appendix G.l.)

Algorithm:

GETDFT first check the values of RECNUM and SUBREC to determine
whether the variable is ICHOOS or DIA. The default values of these two
variables depends on the value of MODE (for ICHOOS) and NSH (for DIA). 1If
the variable is not ICHOOS or DIA, GEIDFT creates a search string by
concatenating RECNUM, a period, SUBREC, another period, VARCOD, and
another period. Then GETDFT uses a linear search through the entries in
the default value dictionary DEFVAL and returns the first description
which contains the search string in its prefix.

47

e R - o e s . >
ST e e, . RS e . .
. N e tetN et et B e .

LU PR S e et N .
> b 3 M A IS . T . S Y

S So0 B A “
P T e e e R P .
LAPUL, W, WA TG WA WP U WD W U W (I W~ WU T S P . Sy . Sy S, PO Y. SO S SRy W e

APPENDIX H

COMMAND EXECUTION 3UBROUTINES

These subroutines carry out the actions which are specified by
the user's commands.

H.1 SUBROUTINE CHANGE AND ASSOCIATED SUBROUTINES

These subroutines correspond to the CHANGE and NEW commands.
They define or re-define the values of the SHOFS input variables. For
each record, there is a subroutine, or set of subroutines, which defines
the variables in that record. These subroutines have the names CRECn,
where n is the number of the record. For example, CREC4 is the subroutine
which defines or changes the values of Record 4, the Method Control
Integers. The subroutine CHANGE controls which of the CRECn subroutines is
called to change the value of a variable.

The CHANGE and CRECn subroutines can be called in one of two
modes: either sequential or non-sequential. In sequential mode, the flow
of logic is sequential. In non-sequential mode, the flow of logic jumps
to the appropriate section of code and then control is returned to the
main program. This is accomplished by having entry points at the
beginning of each section of code and a check for sequential mode at the
end of each section of code. If the mode is non-sequential, the flow of
logic jumps to the end of the subroutine after completing the specified
section of code. For example, here is a sample algorithm of a hypothetical
program with a similar organization to CHANGE:

BEGIN
I1f sequential mode go to Section 1
If non-sequential, find which section should be executed
If 1, go to Section 1
If 2, go to Section 2
If 3, go to Section 3
If 4, go to Section 4
Section 1

1f non-sequential mode, go to END
Section 2

48

If non-sequential mode, go to END
Section 3

Tf non-sequential mode, go to END
Section 4

1f non-sequential mode, go to END
END

This program in sequential mode would execute Section 1,
thenSection 2, then Section 3, then Section 4. In non-sequential r de,
only one of these sections would be executed: the program would j to
the relevant section, execute the code until it reached the statement
testing for non-sequential mode, then jump to the end of the program.

If CHANGE is called in the sequential mode, all the CRECn
subroutines are called; this corresponds to the NEW command. In the
non-sequential mode, CHANGE determines which record the variable belongs
to and jumps to the appropriate section of code, which calls the
corresponding CRECn subroutine.

In the sequential mode for a CRECn subroutine, all the variables
in a record are changed or defined; this corresponds to a "CHANGE record
name" command. The CRECn subroutine in the non-sequential mode determines
which subrecord the variable belongs to, jumps to the appropriate section
of code, which changes the value of the variable.

When in non-sequential mode, the CHANGE subroutines and the CRECn
subroutines use the FORTRAN computed GO TO statement to transfer control
to the appropriate sections of code.

The structure of some of the CRECn subroutines may vary from the
structure described above. This was necessary because the relationships
between some variables require a "ripple" effect: when one of the
variables is changed, the other variables related to it must be changed as
well.

H.1.1] Subroutine CHANGE

Purpose:

This subroutine coordinates the subroutines which change the
values of the SHOPS5 input variables.

49

Arguments:
NEW
where
NEW = an integer which determines whether sequential or
non-sequential mode is used
NEW = 1 invokes sequential mode
NEW = 0 invokes non-sequential mode

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2
COMMON/NO2 /MODE, INOUT, IPOST, ILPT,ILEGND (see Appendix E.l.)

COMMON/CHARS /WRDLST
COMMON/WRDVAL /WRDLEN, NOWRDS (see Appendix I.5.)
COMMON/INFO/BEGIN

The value of BEGIN is set in the main program unit FIVPRE. BEGIN
is the starting position for processing the word list WRDLST (see Appendix
G.2.1. Subroutine DICT).

Algorithm:

Begin

If sequential mode is specified, then
call INITIA to initialize variables

Else
Call DICT to determine which variable to change
Find which record the variable belongs to
Jump to the appropriate section of code, depending on :-he reccrd
number

End if

{Record 1}

Call CRECI

If non-sequential mode, RETURN

{Record 2}

Call CREC2

If non-sequential mode, RETURN

{Record 3}

Call CREC3

If non-sequential mode, RETURN

{Record 4}

Call CREC4

If non-sequential mode, RETURN

50

{Record 5}

Call CRECS

If non-sequential mode, RETURN

{Record 6}

Call CREC6

If non-sequential mode, RETURN

RETURN

{Record 7}

CALL CREC7

If non-sequential mode, RETURN

{Record 8}

Call CREC8

If non-sequential mode, RETURN

{Record 9}

Call CREC9Y |
If non-sequential mode, RETURN 1
{Record 10} }
Call CRECLO |
I1f non-sequential mode, RETURN

{Record 11}

Call CRECl1

If non-~sequential mode, RETURN

End

H.1.2 The CRECn Subroutines

Most of the CRECn subroutines have the arguments

SUBREC, VARCOD, IALL
where

the character code which identifies the subrecord number
(e.g. the character code '02' identifies subrecord 2)
VARCOD = the character code which identifies the variable number
IALL an integer whose value determines whether sequential or
non-sequential mode is used

SUBREC

All the CRECn subroutines have the common block
COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1l.)

In addition, each CRECn subroutine contains the common blocks for
the variables which the subroutine changes or defines.

A few subroutines, namely CREC4, C3SUBLl and C3SUBl (which are
subroutines used by CREC3) use the common block

COMMON/CHARDM/CHRDIM,NDIM

- where CHRDIM is a character array (CHRDIM(4)*12) and NDIM is an integer.
CHRDIM holds the strings 'DISPLACEMENT', 'LENGTH', 'BEAM', and 'DRAFT'.

{ NDIM is 1 if the characteristic dimension is displacement, 2 if the
S characteristic dimension is length, 3 if it is beam, and 4 if it is draft.

The program structure for most of the CRECn subroutines is
basically the sequential/nonsequential structure described in Appendix
H.1l. above. Exceptions are noted below.

Y H.1.2.1 Subroutine CREC3

This subroutine decides which of two subroutines should be called
to change variables in Record 3. The two subroutines are called C3SUB1l
and C3SUBZ. Subroutine C3SUBl is used when the program control integer
MODE is 0 (indicating search mode in SHOP5); subroutine C3SUB2 is used
when MODE is 1 (indicating describe mode in SHOPS).

Arguments:

SUBREC, VARCOD, IALL, ISWTCH

? where
R SUBREC = the character code which identifies the subrecord number
S (e.g. the character code '02' identifies subrecord 2)
o VARCOD = the character code which identifies the variable number
.iﬁ" IALL = an integer whose value determines whether sequential or
S non-sequential mode is used
i ISWTCH = an integer whose value determines whether FIVPRE should

give the user the option of transferring data from one
- mode to another

R The variable ISWTCH requires more explanation. If the user
fJFI changes the value of MODE, he must re—define the primary input variables
; for Record 3. If ISWTCH is 1, the subroutine will ask the user if he
wants to keep the same operational requirements that he had defined for
the previous MODE. 1If the answer is yes, the program will transfer the
data from the primary input variables for one mode to the corresponding
variables for the other mode.

The subroutine CREC3 does not actually use the value of ISWICH;
e it merely passes the value on to the subroutines C3SUB1 and C3SUB2.

H.1.2.1.1. Subroutines C3SUBl and C3SUB2
Subroutine C3SUB1 has the same arguments as CREC3 subroutines

- (i.e. SUBREC,VARCOD,IALL,ISWTCH). It has the general sequential/
g non-sequential program structure described in Appendix H.l.

LAY I B

52

F""*(‘K“‘T“‘T‘.‘T‘r’w-"": At e RS AL S S A e D R e Y = - " » - . . LUl s s s LT TR T T TN R Aat el ¢ g I - - Sl

Subroutine C3SUB2 also has the same arguments as CREC3
subroutines, but the program structure varies from the
sequential/nonsequential structure described Appendix H.l. C3SUB2 does
contain sections of code which are accessed either sequentially or
non-sequentially, and the non-sequential access is the same as for the]
other CRECn subroutines. However, these sections of code are enclosed in Y
one large loop, which is used for sequential access. Each repetition of :

the loop defines or changes the primary input for one ship. For ;j
sequential mode, the loop is repeated until the values for all the ships ol
have been defined. o

H.1.2.2 Subroutines CREC5, CREC6, And CREC11

The subroutines CRECS5, CREC6, and CRECll have similar structures,
so they will be discussed together. They all have the standard CRECn
arguments (i.e.SUBREC,VARCOD,IALL), but they do not have the standard
CRECn program structure. The algorithm they use is as follows:

—d
{
4
Y
Begin o
Write a menu of variables which can be re-defined ;;j
Ask the user which variable he wishes to re-define ﬁj
If the user wants to exit the re-definition of variables, then -
RETURN
Convert the number of the variable to the character code
Call GETDES to get the description of the variable
Write a prompt for the new value of the variable, using the
description from GETDES b
Read the new value from the terminal ?A
Go to the beginning of the subroutine ¥
End

[T
) +

This algorithm was used to avoid too much repetitious code in the
subroutines CRECS5, CREC6, and CREC1l.

H.1.2.3 Subroutine CRECY

Subroutine CREC9 changes or defines the values for the variables
in Record 9. The program structure is not the same as that of the other
CRECn subroutines, because the subrecords of Record 9 are not organized in
a straightforward manner. The variables used for Record 9 depend on the
value of IENGIN (a method control variable). If IENGIN has the value 1,
then Record 9 is composed of the variables in Subrecord 1. If IENGIN is
2, then Record 9 is composed of the variables in Subrecords 2, 3, and 4.
1f IENGIN is 3, Record 9 is composed of Subrecords 2, 3, and 5. If IENGIN
is 4, Record 9 is composed of Subrecords 2, 4, and 6. If IENGIN is 5,
Record 9 is composed of Subrecords 2, 5, and 6. (See Table H.l for the
description of the subrecords of Record 9.)

53

MY AN ol il i T M e r———r—— o a

Arguments:

SUBREC, VARCODE, IALL, ICTRL

where
SUBREC)
VARCOD) are the same as for the other CRECn subroutines
IALL)
ICTRL = an integer variable whose value signals that the value

of ICHOOS is to be changed. If ICTRL is 1, the program
jumps to the point designated by {Entry point for
ICHOOS} in the pseudocode below.

Common blocks:

In addition to the common blocks for the Record 9 variables and
flags, CREC? also contains the common block

TOMMON/ENGDAT/NENGIN, IHRK

CRECY sets the value of IENGIN depending the value of NENGIN and some
other variables which are set during the execution of CREC9. The value of
ICHOOS is set according to the value of IHRK and the current value of the
program control integer MODE.

Algorithm:

Begin
f7 non—sequential mode, jump to appropriate part of code
1f NENGIN = 1
{Subrecord 1}
Define user-supplied engine data
Se+ ILCNGIN to 1
RETURN
Eqd if
1t NENGINE = 2
{Subrecord 3}
Choase SHOPS engine data base
If non-sequential mode, RETURN
Else
{Suhrecord 6}
Define user-supplied engine data base
1f non-sequential mode, RETURN
L’I’ji i
{Subrecord 2
Choose cagine configuration per shaft
{Entry point for ICHOOS!

5S4
..'-.. i _—‘ vv..-‘4 AT .'~‘.‘ . ..' o .._'.‘.. RS el .._"\) R
N A ..- \\" v.‘u.:\‘\‘ R \\‘-.. ~~‘.. 2. _\v- o ..-. R
e R DA .nu"r_. \lﬁ .Suﬁ- \ .L "1" AR IN) :

el . . P IS .
hrat s A'a_ a’ .. atalr " a’ntatain

MRS AN A N A A SRR A e B D A R R T T

I o e D

Ask user if SHOPS5 must use configuration or if SHOPS5 may change
configuration

Set value of ICHOOS according to user's answer and current value of
MODE

Ask user to choose either SHOP5 gearbox hierarchy or user-supplied
gearbox hierarchy

If SHOP5 hierarchy chosen

J . {Subrecord 4}

Pl S =3 o o

Y

Ask user to choose SHOPS hierarchy
Else
{Subrecord 5}
Define user-supplied hierarchy
End if
Set value of IENGIN depending on value of NENGIN and user's choice
gearbox hierarchy
RETURN
End

S ancamas

H.2 SUBROUTINE SHODEF

default command of the specified variable.
Common blocks:

Purpose:
SHODEF corresponds to the DEFAULT command. It displays the
! COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.l.)

q COMMON/ INFO/BEGIN (see Appendix H.1l.1.)

1 COMMON/CHARS /WRDLST

{ COMMON/WRDVAL/WRDLEN, NOWRDS (see Appendix I.5.)

Algorithm:

! SHODEF calls the subroutine DICT to find which variable is being
{ specified, then calls the subroutine GETDFT to find the default value of
the specified variable. If the variable cannot be found in the default
value dictionary, SHODEF prints a message saying that there is no default
value for this variable.

H.3 SUBROUTINE SHOW AND ASSOCIATED SUBROUTINES

The SHOW subroutine and its associated subroutines, the SRECn
subroutines, correspond to the DISPLAY command. They display the values
of variables on the terminal. The n in SRECn is the number of the record
which the subroutine displays. The SHOW subroutine controls which of the
SRECn subroutines is called.

55

E
E

-

A

S ©$ S . . . Lt e e e ..
I AT R T . oL . . o W
IR WL TP SPPLI PRI AP VA LA A S AP JIPU-I I Dol T S U W TP W W Yy P I a A PV S N SR SO) At S,

In program structure, SHOW and the SRECn subroutines resemble the
CHANGE subroutine and the CRECn subroutines. Like the CHANGE and CRECn
subroutines, the SHOW and SRECn subroutines can execute sequentially or
non-sequentially, i.e. the flow of logic can be sequential or it can jump
to the appropriate section of code and then exit from the subroutine.

The subroutine SHOW in sequential mode corresponds to the DISPLAY
ALL command. The SRECn subroutines in sequential mode correspond to the
"DISPLAY record name' command.

In the non-sequential mode, the SHOW and SRECn subroutines work
in the same way as the CHANGE and CRECn subroutines.

H.3.1 Subroutine SHOW

Purpose:

This subroutine coordinates the subroutines which display the
values of the SHOPS5 input variables.

Arguments:
IALL
where
IALL = an integer which determines whether sequential or
non-sequential mode is used
TALL = 1 invokes sequentisl mode
IALL = 0 invokes non-sequential mode

Cormon blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2
COMMON/NO2/MODE, INOUT, IPUST, ILPT, ILEGND
COMMON/NO4 / IDIMEN, IRESID, IAPPND, IPROP, ISTRUC, 1IENGIN, ICHOOS,

IGEN, ICOST
COMMON/NUMBER /NCON, NOPTN, NLIM (see Appendix E.1.)
COMMON/CHARS /WRDLST
COMMON/WRDVAL/WRDLEN , NOWRDS (see Appendix I.5.)
COMMON/INFO/BEGIN (see Appendix H.1.2.)
Algorithm:
Begin

If non-sequential mode is specified, then

Call DICT to determine which variable to display

Find which record the variakle belongs to

Use a computed GO TO to jump to the appropriate section of code
End if

56

LR e ae o g g faa Sas ere Jatn s 808 8 08 bt

{Record 1}
Call SREC1
If non-sequential mode, RETURN
{Record 2}
Call SREC2
If non-sequential mode, RETURN
{Record 3}
Call SREC3
If non-sequential mode, RETURN
{Record 4}
Call SREC4
If non-sequential mode, RETURN
{Record 5}
Call SRECS
If non-sequential mode, RETURN
{Record 6}
Call SREC6
If non-sequential mode, RETURN
{Record 7}
Call SREC7
If non-sequential mode, RETURN
{Record 8}
Call SRECS8
If nomsequential mode, RETURN
{Record 9}
Call SRECY
If non-sequential mode, RETURN
{Record 10
Call SREC10
If non-sequential mode, RETURN
{Record 11}
Call SREC11
If nonmsequential mode, RETURN
RETURN

End

H.3.2 The SRECn Subroutines

All the SRECn subroutines have the arguments

SUBREC, VARCOD, IALL
where

the character code which identifies the subrecord pumber
(e.g. the character code '02' identifies subrecord 2)
VARCOD = the character code which identifies the variable number
IALL an integer whose value determines whether sequential or
non-sequential mode is used

SUBREC

All the SRECn subroutines have the common block
COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1l.)

The subroutine S3SUB1l ‘which is called by subroutine SKEC3) also
uses the common block

COMMON/CHARDM/CHRDIM, NDIM (see Appendix H.1.2)

In addition, each SRECn subroutine contains the common blocks for
the variables which the subroutine displays.

The program structure for most of the SRECn subroutines is
basically the same as that of the subroutine SHOW. Exceptions are noted
below.

H.3.2.1 Subroutine SREC3

This subroutine decides which of two subroutines should be called
to display variables in Record 3. The two subroutines are called S3SUB1
and S3SUB2. Subroutine S3SUBl is used when the program control integer
MODE is O (indicating search mode in SHOP5); subroutine S3SUB2 is used
when MODE is greater than O (indicating describe mode in SHOPS5).

Both subroutines S3SUBl and S3SUB2 have the same arguments as the
SRECn subroutines (i.e. SUBREC,VARCOD,IALL) and also have the general
program structure.

H.3.2.2 Subroutines SREC5 and SRECl1

These subroutines have similar structures, so they will be
discussed together. They both have the standard SRECn arguments, i.e.
SUBREC,VARCOD,IALL. The algorithm they use is as follows:

Begin
If non-sequential mode, determine which variable should be displayed
If sequential mode, set counter to first variable in the record
Repeat
If variable has been re-defined then
Call GETDES to find description of variable
Write description and value of variable to screen
End if
1f sequential mode, go on to next variable
If non-sequential mode, RETURN
Until all variables in the record have been processed
RETURN
End

58

PR AN T SN2 ST AP S, O S ey U S e S

R s e a st e e e e el i e dian e gien e s gun s Moo aon aaa e o

H.3.2.3 Subroutine SREC9

This subroutine does not follow the sequential/non-sequential
structure of the other subroutines because the structure of Record 9
varies, depending on the value of the method control integer IENGIN. (See
the description of Record 9 variables in Appendix H.1.2.3.)

SREC9 has the same arguments as the other SRECn subroutines,
namely SUBREC, VARCOD, and IALL. Its algorithm is described below:

Algorithm:

Begin
If non-sequential mode then
If specified variable is not consistent with current value of
IENGIN, then RETURN
Jump to appropriate section of code, depending on subrecord number
End if
If IENGIN = 1 then
{Subrecord 1}
Display data for user-supplied rubber engines
RETURN
Else
{Subrecord 2}
Display engine configuration per shaft
If non-sequential mode, RETURN
If IENGIN = 2 or 3 then
{Subrecord 3}
Display year of SHOP5 engine data base
If non-sequential mode, RETURN
End if
If IENGIN = 2 or 4 then
{Subrecord 4}
Display SHOP5 gearbox hierarchy
If non-sequential mode, RETURN
End if
If IENGIN = 3 or 5 then
{Subrecord 5}
Display user-defined gearbox hierarchy
If non-sequential mode, RETURN
End if
If IENGIN = 4 or 5 then
{Subrecord 6}
Display user-defined engine data base
If non-sequential mode, RETURN
End if
End if
End

59

HERRSME P Vs SSRGS A G A S A R A vt A B S r s a0 b e 5o it lasiem e g ae p v 4 m SRR Bt iyt Mg Bet ied Sk Sn Bn Bk e mns Anaadaanea |

H.4 SUBROUTINE DUMP

Purpose:

This subroutine corresponds to the command DUMP. The subroutine
DUMP creates a data file called FIVIN which is used as input for SHOPS.
If the user specifies a file other than FIVIN in the DUMP command, the
data will be written to this file as well as to FIVIN.

Arguments:

ISTAT)
wnere
ISTAT = an integer which returns 0 if the DUMP executed without
error, -1 if there was an error

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1l.)
COMMON/CHARS /WRDLST

COMMON/WRDVAL /WRDLEN, NOWRDS (see Appendix I.5.)
COMMON/LIBFIL/LIBDAT(30,2)

COMMON/LIBNUM/NFILES (see Appendix I.9.)

In addition, DUMP contains all the common blocks for the SHOP5S
variables and their flags (see Appendix E.1l.).

Algorithm:

Begin
Check to see if title and primary input have been defined (using
subroutine CHKDAT)
If title or primary input not defined, RETURN
If file name has not been specified then read a file name
If file name is not "FIVIN" then
While (file already exists) or (user does not want to overwrite)
Read another file name
End while
End if
Write data to FIVIN
If file name 1is not "FIVIN" then
Write data to file
Add title and filename to library array LIBDAT
End if
RETURN)
End

60

f -
c et e Al
S -
SIUDRE N0 TP P BRI S RN AROIR SUPS PR TIPREY, (TR SRR R P S T *

o N a_a _a. .

| i A S ACAAC AL ACT Aru & S Arad . S s ahdl o/l NI Riad i N T T o T e e T T T T Y AR A

H.5 SUBROUTINE ENTER

Purpose:

This subroutine corresponds to the command ENTER. It reads data
from an existing file whose name is specified by the user.

Common blocks:

COMMON/DEVICE/NTTY,NDISK, NDISK2 (see Appendix E.l.)
COMMON/CHARS /WRDLST
COMMON/WRDVAL/WRDLEN, NOWRDS
COMMON/XIO/LINE
COMMON/X102/1JK (see Appendix I.5.)
COMMON/LIBFIL/LIBDAT(30,2)
COMMON/LIBNUM/NFILES (see Appendix I1.9.)
COMMON/CHARDM/CHRDIM,NDIM (see Appendix H.1.2)
In addition, ENTER contains all the common blocks for the SHOP5S ;j
variables and their flags (see Appendix E.l.). ;'}
“
Algorithm:
Begin g
If filename has not been specified then]
Read filename -
End if ot
While (file does not exist) and (user wants another file) do]
Read another filename e
End while]
1f user doesn't want another file then o
RETURN

If file is not in library data then
Write a message saying file is not listed in library
Ask user if he wants to enter it anyway
If user says no, ask for another filename
If user says yes, set a flag
End if
Initialize all flags and variables
Read in data from file
If flag is set, enter file name and title into library file
RETURN
End

61

H.6 SUBROUTINE FIND

Purpose:

FIND corresponds to the command FIND. This subroutine asks the
user for a search key, then looks through the library array for files
whose title contain the search key. The file names and titles of these
files are printed on the terminal.

Common bleocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1.)

COMMON/LIBFIL/LIBDAT(30,2)

COMMON/LIBNUM/NFILES (see Appendix I.9.)
Algorithm:

Begin
Aslt uvser for search key
If rwmber of files = 0 then
Jdrite message saying library data doesn't exist
RETURN
End if
I1f search key is blank then
Write out all titles and file names in the library file
Else
“rite out tities and file names for files where the title
contains the search key
End if
RETURN
fnd

H.7 SUBROUTINE HELP
Purpose.

HEL: corresponds to the command HELP. This subroutine lists the
commands available in FIVPRE, or it lists information on a specified
FIVPRE commarnd, depending on the argument INDEX.

Argumen’ v:

IND*X
where

IND: X = an integer which determines which command is to be
explained {see algorithm)

Algorithm:

Begin

If INDEX = 0 then

Write the list of FIVPRE commands
Else if INDEX = 1 then

Write information about command CHANGE
Else 1f INDEX = 2 then

Write information about command DEFAULT
Else 1f INDEX = 3 then

Write information about command DISPLAY
Else i1f INDEX = 4 then

Write information about command ENTER
Else 1f INDEX = 5 then

Write information about command EXIT
Else if INDEX = 6 then

Write information about command DUMP
Else 1f INDEX = 7 then

Write information about command FIND
Else if INDEX = 8 then

Write information about command HELP
Else if INDEX = 9 then

Write information about command NEW
Else if INDEX = 10 then

Write an explanation of the special input symbols
Else if INDEX = -2 then

Write a message saying that command is not uniquely specified

Write the list of FIVPRE commands
Else if INDEX = ~1 then

Write a message saying that no information is available for that

topic

Write the list of FIVPRE commands
End if
RETURN

ABME RIS RSN W Pl el e Tl Mol sad SEE A AN A S N SF KGR A i ey L T T N T Y T T R T T R TR LRI AT

Subrecord

[o ARV TN S S UV I

Number

TABLE H.1: SUBRECORDS OF RECORD @

Description Variables in the Subrecord

User-supplied engine data
Engine configuration per shaft
SHOP5 engine data buase

SHOP5 hierarchy

User hierarchy

User engine data base

SPW2, SFCR

ITYPE

IFUTUR

IHIAR

HIARK(I),I=1,6

SPW2B,

NTURB, NDIES,
NAMTUR(1), NAMDIE(I),
POWT(1), POWD(1),
SFCT(1), SFCD(I),

WTT(I), WID(1I)

\
: APPENDIX 1
UTILITY SUBROUTINES 4
- I.1 SUBROUTINE CAP
o Purpose:
. This subroutine capitalizes all lower-case letters in a character]
. string.]
. 4
Arguments:
] LINE
- where 9
LINE = the character string to be capitalized p
p
; Algorithm: ’
) Begin {
i Calculate the difference between the ASCII decimal equivalent (ADE) of]
- 'A' and the ADE of 'a' using FORTRAN function ICHAR]
For I = 1 to (length of LINE) do 1
If I'th character of LINE is a lower-case letter, then add on DIFF
5 (the difference calculated above) to the ADE of the character
s End for :
. RETURN k
3 End k
I.2 SUBRQUTINE STRIP ?
K Purpose:)
.. 4
- This subroutine strips off the leading blanks in a character)

. string and also returns the position of the last non-blank character in
the string.

Arguments:

LINE, IBLANK

where

v LINE = character string to be processed
: IBLANK = the position of the last non-blank character in
i LINE
- 65
S
g
Wi T A 47 e T n e et et e Ao
Wl D AL TR :\ '

.I‘t %, .I' .' N

R S B A e Bl e 2 A A S R O A AR G B N T 3 S Sa R S A A A B A dad Sl e A A S SN A R R

Algorithm:

Begin
Copy characters from LINE into STRING (another character string)
starting at first non-blank character in LINE
Starting at end of STRING and moving toward beginning of STRING, 1look
at each character of STRING until a non-blank character is found;
record its position in IBLANK
Copy STRING into LINE
RETURN

End

1.3 LOGICAL FUNCTION NUMBER

Purpose:

This function checks to see if a character string is a number.
It returns true if the character string is a number, and false if the
character string is not a number, i.e. if the string contains any

non-numeric characters other than '+', '=', or '.', or if the string
contains any imbedded blanks. A number may not contain more than one sign
('+' or '-') or more than one decimal point ('.').

Arguments:

LINE, ISTART, IEND

where

LINE = character string to be checked

ISTART = the starting position in LINE

IEND = the last position in LINE to be processed
Algorithm:
Begin

Find first character in LINE which is not a '+','~',or a blank
For 1 = (current character position) to IEND do
If I'th character in LINE is not a numeric character or it is the
second occurrence of a decimal point, then NUMBER is false
End
RETURN)
End

66

At al AR A° A AC R RS R R I’ B) Sl St B B Ml e Io/np i Sl el Sl B A S B A e A Ui R A R A A A S TP R s e

1.4 SUBROUTINE CONVER

Purpose:

This subroutine converts a character string into a real number
(e.g. '124' would be converted to the real number 124).

Arguments:
STR, ANSWER
where
STR = character string to be converted
ANSWER = the real number which is the result of the conversion
Algorithm:
Begin

Right-justify the characters in STR
Use the FORTRAN internal READ to convert STR into a number
RETURN

End

1.5 SUBROUTINE PLINE

Purpose:

This subroutine takes a character string and breaks it up into a

word list. Words are delimited by blanks, '=', semicolons, or commas.

Semicolons, commas, and '=' are also considered to be words.
Arguments:

TYPO
where

TYPO = an integer which determines whether a line of input is
read from the terminal

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1l.)
COMMON/CHARS /WRDLST e
COMMON /WRDVAL /WRDLEN, NOWRDS)
COMMON/XIO/LINE -
COMMON/XI02/1JK ey

e s G A N 0 L BT £ 0 B R A S G A, ged atd e AN ~altht, et T B T T T et Tl A, VW T S TR TR - ARG PR

where
WRDLST = the word list (an array of character strings) which
results from the processing of LINE
WRDLEN = an integer array which contains the length of the words
in WRDLST
NOWRDS = the number of words in WRDLST
LINE = the character string to be processed
1JK = the last non-blank character in LINE
Algorithm:
Begin

1f TYPO = 1, read in a line of input (LINE) from the terminal
all CAP to capitalize the line
Call STRIP to strip off leading blanks
For I = 1 to (end of character string) do
TEMP = 1'th character in LINE
If TEMP is a blank, then
Finish processing the current word
Else if TEMP is a '=', semicolon, or comma, then
Finish processing the current word
Add TEMP to the word list

Else
Add the character to the current word
End if
End for
Scan through word list and remove all words with length = 0
RETURN

End

T.6 SUBROUTINE READIN

Purpose:

This subroutine reads in a value from the terminal and checks to
ze if the value is of the specified type (integer,real, or character).
f the value is not the right type (e.g. character when it should be
real), the subroutine prompts the user until an acceptable value is
entered. READIN checks for the "*" input before processing the value. It
can also check for the word "DEF". .

s
T
I8

68

et [. S e e LMn e A -
RO R o~ '.__‘.} NS AN S St T RS '_
M .' -

it -

Arguments:

DTYPE, IVAL, RVAL, CVAL, PROMPT, IDEFLT
where
"TYPE = a character variable which specifies which data type to
read in. DTYPE can have the values 'I', 'R', or 'C' to
specify integer, real, or character variables.

IVAL = the returned integer value

RVAL = the returned real value

CVAL = the returned character value

PROMPT = a character variable containing the phrase used to
prompt for input

IDEFLT = an integer whose value determines whether the word "DEF"

should be recognized:

If READIN is called with IDEFLT = 1, then READIN will
check for the word "DEF". 1If the word "DEF" is found,
the variable IDEFLT has the value 99 on return to the
main program.

Note that only one of the arguments IVAL, RVAL, or CVAL is used
to return the value which is read in. IVAL is used when DTYPE = 'I', RVAL
is used when DTYPE = 'R', and CVAL is used when DIYPE = 'C'. Dummy
arguments should be used for the two arguments which do not return the
value. FP.r example, suppose the value to be read in is an integer.

READIN mignt be called with the statement

CALL READIN('I',INUM,DUMMY,DUMCHR, 'ENTER AN INTEGER',0)

The reason for these multiple arguments is that FORTRAN does not
convert data types when values are passed through a subroutine's
arguments. If an argument is declared to be real in the subroutine, but
the calling statement uses an integer variable for that argument, then the
real value returned by the subroutine is not converted to an integer value.

Common blocks:
COMMON/DEVICE /NTTY,NDISK,NDISK2 (see Appendix E.l.)
Algorithm:
Begin
Repeat
Write PROMPT
Read a character string from the terminal

Call CAP to capitalize the string
Call STRIP to strip leading blanks

69

. - PRSI . .
. - A TR Ce® et AT DI P At
| > - AT e T e e T Myt w0t 2 e

s JEEN

If the first character is a '*', then
RETURN

Endif

If data type 1s numeric and string is not a number then
!'f IDEFLT = 1 and string = 'DEF' then

ey Set value of IDEFLT
T RETURN
e flse
Write an error message v
Ind if
e End if
rﬁf Until user has entered acceptable input .

If data type is integer or real and string is a number then
Convert character string to a number

End if

% If data type is character, CVAL = string

S RETURN

- - End

- - 1.7 SUBROUYINE INITIA

Purpose:
*f: INIT1A initializes the values of all the SHOP5 variables and

o their flags. The variables are initialized to 0O, and the flags are
’ initialized to false. Character variables are initialized to blanks.

SR Common blocks:
a'{ TNTTIA contains all the common blocks for the SHOPS5 variables and

their flags (see Appendix E.l.).

o I.8 SUBROUTINE CHKDAT

o Purpose:

- Thkis subroutine checks to see if the title (Record 1) and the
primary input (l.ecord 3) have been defined. These two records are
required data and do not have default values.

;>? Arguments:
T IERR ‘
{ where

— IERR = an integer who- value is returned as 0 if both Record 1
jnf~ and Record 2 are defined, -1 if Record 1 is undefined,
o and -2 if Record 3 is undefined or incompletely defined.
B

¥{ﬁ

A%
-_s.' ‘.
- 70

o

.2

| AR AR A A S C - B SRS I i 0 G of v vl S ACRAR: VK SRS Aaigin

»-\",_
P
h:\-:_.
..,- '
o
r.:':
VDS 1.9 SUBROUTINE LIBINT
Purpose:
mﬁ;f This subroutine updates the library file, FIVLIB, by checking to
- see that all the files listed in FIVLIB actually exist. If a file listed
S in FIVLIB does not exist on the system, LIBINT deletes that en-ry from
PRI FIVLIB.
. Common blocks:
LA
COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.l.)
COMMON/LIBFIL/LIBDAT(30,2)
R COMMON/LIBNUM/NFILES
where
LIBDAT = an array of character strings which contains the titles
and file names of files created by FIVPRE LIBDAT(I,1) is
the list of titles LIBDAT(I,2) is the list of file names
NFILES = the number of files listed in LIBDAT
Algorithm:
2?4 Begin
IR Read data from FIVLIB into the array LIBDAT
oM For each entry in LIBDAT do
o Try to open file using FORTRAN OPEN statement with STATUS = 'OLD'
I1f there is an error, then delete the file name and title from
; LIBDAT (i.e. set file name and title to blanks)
R End for
e Remove blank entries from LIBDAT
RETURN
- End

71

Bali gt JHa? Sateua® aing Y AR g duiatfnt o 0 L Sl S At e i pie e [i g s i it it~ e ir~o gty . 1 T ——— e
REFERENCES
1. Colwell, J.L.: "SHOP5: A Frigate/Destroyer Exploration Model -

User's Manual', DREA Technical Memorandum in Review

2. Hally, David and C. Ann Dent: "GETWRD Package', DREA Technical

Memorandum 84/D, March 1984.

72

. R P IR I T I L I e
P R U U S
‘-'..‘-'.‘f:i'.:.'ﬂ_\'\."p.‘i- VRV T R

kAl A el it sl et o Lot il o=l S Pl O e v vt St N Wl S Sl ualh calh N e ek e ot e el el B sl el ﬁv-r*"w';'vT

UNLIMITED DISTRIBUTION

UNCLASSIFIED

Security Cuassicstion

DOCUMENT CONTROL DATA - R& D

{Securnty classification of titie, body of abstract snd indexing annotstion must be entered when the overstl document s cisssitied!

1 ORIGINATING ACTIVITY 2a. DOCUMENT SECURITY CLASSIFICATION
IINCI.ASSIFTIED
DREA 26 GROUP

3 DOCUMENT TITLE
FIVPRE: A PRE-PROCESSOR FOR THE CONCEPT EXPLORATION MODEL SHOP5

4 DESCRIPTIVE NOTES (Type of report and inclusive dates) . .
Technical Communication

S AUTHORIS) {Last name, first name, middie initial)

Lee, Bonny; Colwell, J.L., Godreau, P.V.

6 DOCUMENT DATE 7a. TOTAL NO. OF PAGES | 7b. NO. OF REFS
AUGUST 1985 78
| 81 PROJECT OR GRANT NO. 92 ORIGINATOR'S DOCUMENT NUMBERIS}

DREA TECHNICAL COMMUNICATION 85/310

8b. CONTRACT NO. b, OTHER DOCUMENT NO.(S} (Any other numbers thst may bs
asigned this document)

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES 12. SPONSORING ACTIVITY

DREA

S

13. ABSTRACT

-7

FIVPRE is an interactive pre-processor for SHOPS, the DREA
Concept Exploration Model for conventional monohull frigates and
destroyers. FIVPRE provides the user with a simple means to create and
modify the input files for SHOPS5. Prior knowledge of the format of these
files is not required. Through a simple command language, FIVPRE can be
used to define new or change existing values of SHOPS input parameters
from the terminal. FIVPRE also keeps records of the files it has
created. This Technical Communication is a user's manual for FIVPRE,
describing the FIVPRE commands and giving examples of terminal sessions.
The appendices contain a brief description of SHOPS input and program
documentation of FIVPRE, including descriptions of all the procedures in

FIVPRE.
~
' ! ,
' .
.~ ~ ¢ -
.
SIS
1010
. -'-’n‘»'w ‘_- e e IR e . . o . .«
~ v N T LS A N . et - -
- i, a{ .-. .\- S -.', ‘ DRSRER ~-w."»‘_.\ SR "',... Wt . B R L R . L "‘~~,
e T e oo ST et e e . R B S e - -
L"\" - sLJ‘“.‘ 'L“"" L\‘—ih’- ‘k‘. PP, T S W W A R TR A PR IR C T N, S PO -\A_‘AA_.AIkh‘L.:‘L_\ Y e

UNCLASSIFIED

hcwlly cunmnllon

KEY WORDS

- Pre-processor .
SHOPS
FIVPRE
Naval Architecture
Frigate
Destroyer .
Concept Exploration Model . -7

b

L)

Ta.

8b.

INSTRUCTIONS

ORIGINATING ACTIVITY Enter the nsme end sddress of the
organization issuing the document.

DOCUMENT SECURITY CLASS!FlCATION Enter Ihc overall

security classtheation of the d g P | warning
tesrms whenever spplicable.
GROUP. Enter security reclassit proup . The three

aroups are detined in Appendix ‘M’ of the DRB Socumv Regulations.

DOCUMENT TITLE: Enter the compiete dacument titls in all
caonal letrers Titles in oll cases should be unciassified. 1t o
sthiciently descriptive title cannot be selected without classifi-
canon, show title clmol-unon wnh :m uwl! one-capital-letter
abbr n par Iy ing the title.

DESCRIPTIVE NOTES. Enter the category of document, ¢.¢.
tachnical report, technical note or technical letter. 1f sppropri-
ate, enter the type of document, e.g. interim, progress,
summary, annual or final. Give the inclusive dates when o
spacific reporting period it covered.

AUTHORIS): Enter the namels) of suthor(s) as shown on or
in the document. Enter last name, first name, middie snitial.
it mulitery, show rank. The name of the principst suthor is sn
absolute minimum requirement.

DOCUMENT DATE: Enter the date (month, yesr) of
Estabiishment approval for publicstion of the document.

TOTAL NUMBER OF PAGES: The tots! pege count shoulkd
tollow normsl poginstion procedures, i.e., enter the number
of pages contaning information.

NUMBER OF REFERENCES: Enter the total number of
refercnces cited in the document.

PROJECT OR GRANT NUMBER: (I sppropriste, enter the
appticabie research and development project or grant number
under wheeh the document was written,

CONTRACT NUMBER If appropriate, enter the spplicable
nuinber under which the document was written,

ORIG NATOR'S DOCUMENT NUMBERI(S). Enter the

e 11 ol document number by which the document will be
wientitux] and controlied by the originating sctvity. This
number mus) be unigue to thus document.

9o,

10.

14,

OTHER DOCUMENT NUMBERI(S): If the document hay been
sstigned any other document numbers (either by the onginator
or by the sponsor), siso enter this numberls).

DISTRIBUTION STATEMENT: Enter any | mitation or
further disse ion of the d . other than thoss rmposed
by security cl using derd such &s

(1) "Quatified requesters msy obtain copies of this
document from their defence documentation ce-i‘er.”

2t “A and d of this documant
is not authorized without prior spproval from
originating activity.”

. SUPPLEMENTARY NOTES: Use for additinal sxpiset.s vy

notes.

. SPONSORING ACTIVITY: Enter the name >f the deps:>mental

project office or lsboratory sponsoring the resserch snd
development. Include address.

ABSTRACT: Enter an .bnucr giving 8 brisf end factus!

y of the & t, even though it may 8lso sopesr
sisewhere in the body of the document mm 1t 1 highty
desirsbie that the of be unciessr
fied. Each peregraph of the sbetract shall end wath en
indication of the security clessificetion of the informatio :
in the paragraph (uniess the document itseif 13 unclessiter o)
represented 8s (TS), (S), (C), (R), or (V).

The length of the sbitract should be limited 10 20 single-srazsd
stendard typewritien lines; 7% inches long.

KEY WORDS: Key words are technically mesningtul term: or
short phrases that charscierize 8 document enc could be haisivl
in catsloging the document. Key words should be ssiected so
that no security classification 1 required, identifiers, suct s
squipment model designation, trade name, m:lAary projct rode
nsmae, geographic iocation, mnv be used " koy words but will
be followed by an i hecsl context.

-y ™) ol fodh g fvalh el 't 2 g = CH S pen yroCYy .
D0 0 A AL & AN AU B il A TS S S e ARSI I S A R S A At A A A NS oL N e o

. DTIC

R I i A I

s A e
< -

T\ e e
AR O GO VO CR LS SN

e LR SN AT b SRANA RIS Ty
. . BN R AP TR ASEAIASARIA A S iy R N
- - - - I -

